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Abstract

We provide a survey of methods for inferring the structure of a finite automaton from passive obser-
vation of its behavior. We consider both deterministic automata and probabilistic automata (similar to
Hidden Markov Models). While it is computationally intractible to solve the general problem exactly,
we will consider heuristic algorithms, and also special cases which are tractible. Most of the algorithms
we consider are based on the idea of building a tree which encodes all of the examples we have seen, and
then merging equivalent nodes to produce a (near) minimal automaton.
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APFA Acyclic deterministic Probabilistic Finite Automaton. A DPFA in which the underlying topology is
acyclic.

DFA Deterministic Finite Automaton.

DPFA Determinisitic Probabilistic Finite Automaton. This is a DFA in which states emit symbols proba-
bilistically, but the next state is uniquely determined by the current state and the symbol.

FSM Finite State Machine. This is a DFA which converts input strings to output strings. Also called a
transducer. There are two main kinds: a Moore machine associates a (deterministic) emission function
with each state, and a Mealy machine associates a (deterministic) emission function with each arc.

HMM Hidden Markov Model. This i1s a special case of an NPFA in which the transition probabilities
are independent of the symbol which is emitted; hence an HMM is a Markov Chain in which states
emit symbols probabilistically. We usually specify the emission and transition probability distributions
separately.

NFA Non-deterministic Finite Automaton. Like a DFA, except that there may be several possible next
states given the current state and symbol.

NPFA Non-deterministic Probabilistic Finite Automaton. This 1s an NFA in which states emit symbols
probabilistically, and the next state is chosen probabilistically (conditioned on the symbol). We usually
specify the probability of emitting a symbol and transitioning to the next state jointly.

PFA Probabilistic Finite Automaton.

PSA Probabilistic Suffix Automaton. This is a special case of a DPFA in which each state label is a string
of at most length L. It can be used to model a Markov Chain in which some states have order L, and
other states have lower order.

Table 1: A list of the acronyms used in this paper.

1 Introduction

In their excellent survey paper, Angluin and Smith [AS83] define “inductive inference” as the “process of
hypothesizing a general rule from examples”. We are interested in the special case where the “rule” takes the
form of a Deterministic or Probabilistic Finite Automaton (DFA or PFA), and the examples are (assumed
to be) drawn from a (stochastic) regular language. (See Table 1 for a list of the acronyms used in this paper;
the different models that we use will be defined more fully later.) We can think of this as the problem of
trying to learn the structure inside of some “black box”, which is continously emitting symbols.! Thus no
experimentation or oracle queries are allowed. We concentrate on recent results which are not mentioned in
the 1982 survey on inductive inference by Angluin and Smith and the 1990 survey on grammatical inference

by Miclet [Mic90]. (See also the book by Fu [Fu82].)

1.1 Applications of automaton inference

Most of the work on automaton inference (especially the early work) is theoretical in nature: finite automata
are simple; so we can characterize more easily how hard it is to learn them, both in terms of how large the

1 We will consider two cases: one in which the target automaton (the one we are trying to learn) returns to its start state
after it emits each string, and (in the case of PFAs only) one in which it runs continuously (i.e., there is no final state). We
also assume that it is minimal, i.e., has no redundant states.



training set must be, and how much time is needed — that is, the sample and time complexity.

However, finite automaton inference also has several “real world” applications. In the electrical engineering
community, there is considerable interest in synthesising Finite State Machines (FSMs are DFAs with output)
from a partial specification of their behavior; see for example [OE95] and the references therein. DFAs have
also been proposed as a model of players (in a game-theoretic sense) with bounded rationality; learning to
play optimally against such players is very similar to the inference problem defined above; see for example
[FKMT95] and references therein. Finally, we can imagine the problem of a robot trying to learn the structure

of its environment, which can be modelled as a DFA; see [RS87, RS89, MB91].

The applications of PFAs, of which Hidden Markov Models (HMMs) are a special case, are much more
extensive. HMMs have been very widely used in the speech and handwriting recognition communities (see
e.g., [Rab89, RST95]), and have also recently been applied to recognizing patterns in biological sequences
such as DNA and proteins (see e.g., [KMH93, KBM*94, BCHM94]). Most work on HMMs assumes the
sructure or topology is specified in advance, and the learning procedure (which is usually called training in
this context) merely consists of finding the right transition probabilities. (A similar comment can be made
about neural networks.?) We are interested in the more general problem of learning the topology of the
model, as well as the transition probabilities, starting from scratch. (The even more general problem of
choosing a model class is discussed in [Cru91].) The hope is that PFAs can then be applied to domains
where we have little or no prior knowledge as to what the correct structure should look like. As an example
of this, Crutchfield and Young [CY89, You91] propose learning a PFA from a series of measurements taken
from a non-linear dynamical system, and using the “complexity” of the resulting PFA as a measure of the
complexity of the original system. (See also [1i90].)

1.2 Why PFAs instead of other probabilistic models?

We could consider the problem of learning probabilistic models which are more powerful than PFAs; such
as belief (Bayesian) networks [Pea88, HGC94] or stochastic Context Free Grammars [JLM92], but learning
PFAs will prove to be hard enough. In fact, the problem is so hard (i.e., time-consuming) that we will mostly
concentrate on a special case, which we call “deterministic” PFAs (DPFAs). These are less powerful than
HMMs, and hence easier to learn. In fact, experimental results in [RST95] show that it is 10-100 times
faster to learn a pronunciation model for spoken words using a (certain kind of) DPFA than it is to learn a
corresponding HMM, and yet the performance of the DPFA 1is actually slightly better. Also, it is possibly to
come up with provably efficient algorithms to optimally learn this kind of DPFA | whereas optimally learning
HMMs is provably hard — the algorithms used in practice only find a local optimum.

Another kind of DPFA, called a Probabilistic Suffix Automaton (PSA), can be viewed as a Markov chain in
which each state has order at most n. This is much smaller than an explicit Markov chain in which every
state has order exactly n; such a model has O(|Z|") states (where ¥ is the alphabet), and hence requires an
exponential amount of data to learn the transition probabilities. (A Markov chain of order n is also called
an n-gram model.) Experimental results in [RST94] show it is possible to learn a DPFA that performs well
on a task which involves correcting errors in text, but it is not yet clear if this method is better than other
sparse n-gram methods such as hash tables. Also, the results of this model applied to a task which involved
locating genes in F. coli DNA were inferior to the results of an HMM with a hand-crafted topology (see
[KMH93]), although this may be because of the postprocessing they perform to cope with overlapping genes.

?See [HKP91] for a good book on neural nets.



1.3 The input to/output from the algorithms

The input to the algorithms will usually be a set or multi-set of finite-length strings. Some of the algorithms
accept a single string of length m (assumed to be generated by a PFA with no final state), but they convert
this to a multiset of m — £ + 1 strings by sliding a window of length ¢ across it. If the strings are unlabelled,
we assume they are positive examples of the target (stochastic) regular language we are trying to learn.
Unfortunately, in the deterministic case, it is not possible to learn a language from positive data alone
[Gol76], so often the strings will be labelled as either in the language (positive examples) or not in the
language (negative examples). When trying to learn FSMs, rather than just presenting strings with their +
or - labels, we give the corresponding output strings they should produce; this is sometimes called a (partial)
behavioral specification.

In much of the literature, the goal has been to learn the right rule (i.e., the rule believed to be generating
the examples) in the limit of infinite data. This notion is called identification in the limit, and was invented
by Gold [Gol76]. In the case of DFAs, the “right rule” means that the inferred model should be as small
as possible, and contain all the strings in the set of positive examples and none of the strings in the set of
negative examples. If no negative examples are provided, the inferred language should contain as few strings
as possible which are not in the positive example set.

In the case of PFAs, our goal might be to learn the target probability distribution with probability 1 in the
limit of infinite data. However, in practice we only have a finite amount of data, so a more useful goal would
be to approximate the target distribution to within some precision given only a finite training sample. We
will define this more precisely later.

1.4 Batch vs. online algorithms

An online algorithm receives a new input string #; (along with its label) at every time step ¢, and returns
its best guess Hy so far about what the target automaton is. H; should be computed only from H;_; and
z¢. Usually we impose the additional constraint that the size of Hy be a sublinear function of ¢, so that an
algorithm which remembers all the strings so far, and each time constructs a new model “from scratch”, is
not considered on-line.

A batch algorithm, in contrast, waits until it has received the complete input set I, and then produces its
best guess. Many batch algorithms can be converted to on-line algorithms by alternating between “growing”
and “shrinking” phases: in the growth stage, new strings are added to the current model, and whenever it
becomes too big, the state merging algorithm is invoked (see [RST95, SO94] for examples).

1.5 Bottom-up vs. top-down algorithms

Most of the batch algorithms we study work in roughly the same way, namely: construct some canonical, tree-
shaped automaton which represents the input set (see Figure 2 for an example), and then merge equivalent
states to get a smaller model. (We will explain the details later.) We call this a “bottom-up” approach. A
“top-down” approach consists of starting with a 1-state model, and then trying to “fit” new strings to the
model, and splitting it apart into new states/ transitions whenever necessary.

There is no consensus on which method is better. In the case of learning FSMs from an incomplete sample,
we will study a top-down algorithm which runs in time exponential in n (the number of states in the final,
minimal machine), and a bottom-up algorithm which runs in time exponential in ¢ (the number of nodes in
the tree). Experimental results [OE95] verify that the top-down approach is faster in practice. However, the



exponential in ¢ behavior arises because (1) the input is incomplete, and (2) we insist on an exact answer.
Removing either of these conditions will yield a much faster (polynomial time) solution, as we will see.

Ron, Singer and Tishby [RST94] present a top-down algorithm for learning a PSA (a Probabilistic Suffix
Automaton, which can be thought of as a variable-order Markov chain). They claim that their top-down
scheme is equivalent to a bottom-up scheme, but that the top-down scheme i1s “somewhat more intuitive,
simpler to implement, [and] more easily adapted to an online setting”. However, Stolcke and Omohundro
[SO94] say that, “our experience has been that modelling approaches based on splitting tend to fit the
structure of a domain less well than those based on merging”. Intuitively the reason for this i1s that top-
down approaches have seen less of the data, and have to make decisions too early, whereas bottom-up
approaches have more and more data to work with as states get merged.3

The most general approach would be to think of the problem as searching through model space, and allow
both the splitting and merging operators. As far as we know, no one has tried this.

2 Finite automata defined

The model classes we shall consider are deterministic finite automata (DFAs) and probabilistic finite au-
tomata (PFAs). We shall define these more precisely, and then show how PFAs relate to Markov Chains and
Hidden Markov Models (HMMs). DFAs are discussed more fully in [AU72, HU79] and PFAs in [Paz71]; for
a good tutorial article on HMMs, see [Rab89).

2.1 Deterministic Finite Automata

Definition 1 A Deterministic Finite Automaton (DFA) is a tuple M = (X,Q, qo, F',d), where ¥ is the
mput alphabet, () is the set of states, qo is the initial or start state, F' C @) 1s the set of final states, and
J : ¥xQ — Q is the transition function. A Non-deterministic Finite Automaton (NFA) is the same as a
DFA except that § C XxQxQ is now a relation; intuitively, for each state ¢ and input letter a, there may
be several states that can be reached on the next step (hence the next state is not fully determined ).

The above definition of a DFA/NFA views it as an acceptor of strings. A string # = x1@s ... 2, is said to
be accepted by a DFA/NFA if there is at least one path edge-labelled by @ which starts in the initial state
and ends in a final state. (This definition covers the case of an NFA in which we may not know which edge
to follow — conceptually, we are allowed to try them all, as long as at least one of them leads to a final
state.) The set of strings accepted by a DFA/NFA M is called the language accepted by M, and is denoted
L(M). Any language accepted by a DFA/NFA is called regular. Equivalently, we can view DFAs/NFAs as
generating a language, by performing all possible walks from the intial state to a final state; we then define
L(M) as the set of strings generated by M.

A final state can be viewed as emitting the “accept” symbol, and a non-final state as emitting a “reject”
symbol. A natural generalization of this is to allow states to emit arbitrary symbols. This is called a Moore
machine. Now, whenever we perform a walk to accept an input string z, we emit a series of symbols at each
state we encounter to form an output string y. Thus the resulting machine acts as a transducer, transforming
input strings into output strings. Alternatively, we can think of associating output symbols with each arc
instead of each state; this is called a Mealy machine. Moore and Mealy machines are interconvertible.
Transducers are also called Finite State Machines (FSMs).

3In a personal communication (11/15/95), Dana Ron pointed out that their top-down algorithm actually looks at the whole
tree constructed so far, and thus has roughly the same amount of information available to it as a bottom-up algorithm.



2.2 Probabilistic Finite Automata

Unfortunately, there is is a lot of confusion about what exactly is meant by a PFA. Basically a PFA is a way
of specifying a probability distribution over strings in a regular language.

It is important not to confuse probabilism with non-determinism. A non-deterministic machine is one
in which the next state is not fully determined by the current state and the current input character. A
probabilistic machine is one which has probabilities associated with it.* There are at least two natural ways
of associating probabilities with a finite automaton. One is to take a DFA and associate a probabilistic
emission function with each state; thus v(q, a) is the probability that state ¢ emits symbol a. We call this a
Deterministic Probabilistic Finite Automaton (DPFA), since, once the symbol is emitted, the next state is
fully determined (hence we can equivalently think of the symbols as being attached to the arcs).

The second way to associate probabilities with a finite automaton is to attach probabilities to the arcs of an
NTFA. We shall call such machines Non-deterministic Probabilistic Finite Automaton (NPFA), since there is
a choice of next states, even once we have seen the symbol. The transition relation § is replaced by a series
of |X| transition matrices T'(), each of size n x n, where n is the number of states. There are two possible
interpretations of T'(a)[é, 7]: it could denote the joint probability of going from state ¢ to state j and emitting
symbol a, which we shall call an output-NPFA | or it could denote the probability of going from state 7 to
state j given that the input symbol was a, which we shall call an input-NPFA. The former model is the one
which is most similar to Hidden Markov Models, and is the one we will concentrate on. The latter model,
however, is the original definition, and stems from the tradition of viewing automata as acceptors of strings.
In the next subsection, we shall show that output-NPFAs are more “general” than input-NPFAs (although
input-NPFAs can be generalized to probabilistic transducers in a way which output-NPFAs cannot).

2.2.1 Input-NPFAs vs. output-NPFAs

In an input-NPFA, we define T'(a)[7, j] = Pr(g;]¢:,a). Hence the transition matrices T'(a) are stochastic
matrices, which means each row must sum to 1: Zj T(a)[i,j] = 1 for all ¢, a pairs. Hence the number of
degrees of freedom is (n — 1) x n x |Z|. In an output-NPFA, the probabilities are joint probabilities over
transitions and emissions, that is, we define T'(a)[7, j] = Pr(«a, ¢;]¢;). We require that Zj Yo T(a), ] =1
for all . Hence the number of degrees of freedom is n(n|X|—1). Thus we see that an output-NPFA has more
degrees of freedom than an input-NPFA; for example, for a binary alphabet, an output-NPFA has 2n? — n
degrees of freedom, whereas an input-NPFA has only 2n? — 2n. This is one sense in which an output-NPFA
is more general than an input-NPFA.

We can convert an input-NPFA into an output-NPFA if we specify the distribution Pr(alg), i.e., the proba-
bility of generating a string. This is an extra n(|X| — 1) degrees of freedom. (This distribution is implicit in
the output-NPFA, since Pr(alq) = Zq, Pr(a,q¢'|¢).) This is another sense in which an output-NPFA is more
general than an input-NPFA.

Finally, in the next subsection we will see that output-NPFAs can be used both to generate random strings,
and to evaluate the probability that a random string was generated by a given output-NPFA | whereas input-
NPFAs can only be used to evaluate the probability of a string generated by some other process. This is
the final sense in which output-NPFAs are more general. Since we are interested in passively learning the
structure of an automaton which “spontaneously” generates strings, from now on we will shall only consider
the case of output-NPFAs, and drop the prefix “output”.

4However, in view of the fact that DFAs and NFAs are equivalent in power (i.e., accept the same set of languages), we often
use the phrase “deterministic finite automaton” to mean “non-probabilistic finite automaton”, which covers both DFAs and

NFAs.



The original definition of a PFA, due to Rabin [Rab63], was in fact as an input-NPFA, and stems from
the tradition of viewing automata as acceptors of strings. In Rabin’s formulation, a string is said to be
accepted if the probability of its being accepted exceeds some threshold ¢ € [0, 1). By using the fact that the
number of possible values for # is uncountable, he showed that the class of languages accepted by PFAs is
strictly greater than the class of languages accepted by DFAs; if, however, # is restricted to being a rational
number, PFAs are no more powerful than DFAs. Furthermore, any PFA which has an isolated cut-point can
be converted to a DFA. A cut-point € is called isolated with respect to a PFA if there exists a § > 0 such
that | Pr(z) — @] > d for all # € £*. The intuition is that, by performing repeated trials to reduce the error,
we can be sure that the string is definitely accepted or rejected, since all probabilities are bounded away
from @, and hence we can convert the PFA to a DFA.

2.2.2 Generators vs. evaluators

As shown in [KMR194], when talking about a discrete probability distribution, it is important to distinguish
between generators and evaluators. An evaluator for a probability distribution D (over fixed length strings,
say L") takes as input a string # and returns its probability under D. A generator takes as input a string
of random bits, and outputs a string that is distributed according to D. They show that some kinds of
distributions have efficient (polynomial sized) generators but no efficient evaluators.

It is clear that a DPFA and an output-NPFA can be used to generate a string of length m in O(m) time:
for a DPFA, if we are in state ¢, choose an emission symbol a according to ¥(¢q,a) and move to the state
determined by (¢, a); for an NPFA, if we are in state ¢, choose an arc leading out of ¢, emit the symbol
on that arc’s label and move to the next state. To generate strings in some stochastic regular language, we
perform the above walk starting in the initial state until we end up in a final state (which might emit a
special final symbol). To generate strings of length m, we just do a walk of m steps (optionally followed by
a transition to the final state). To generate infinite length strings, we perform a continuous walk. Tt is not
clear how to use an input-NPFA as a generator, however.

We now show how to use these models as evaluators. The basic idea is to consider all paths edge-labelled by
T = 129 ...Zy, and for each path, compute the product of the probabilities on each edge. If the underlying
graph is deterministic, there will only be one path, so this is easy: we can evaluate the probability of a string
of length m O(m) time. If the underlying graph is non-deterministic, things are a bit more complicated,
because there may be many paths labelled by x. Nevertheless, we can do this efficiently, as we now explain.

The first method uses matrix multiplication. The probability of all paths from 7 to j which are labelled by
z is given by T'(z)[i, j], where T'(x) = T(x1)T(x2) - T(x,,). This takes O(mn?®) time to compute. We can
stipulate that the path must start in the initial state (with index 0, say) and end in a final state (with indices
in the set F), and set Pr(z) = ZfeF T(2)[0, f]. Alternatively, we could allow any state to be the initial state
with some probability 7(¢), and not have any distinguished final states, and set Pr(z) = Zi,j ()T (x)[4, j].

Another way of writing the formula is as follows.

Pr(z) = > w(0)Pr(qlo, x1) Pr(galqs, z2) - - Pr(gmlgm—1, #m)-
q90,91,92,-9m

A naive implementation of this would take O(mn™) time, since there are n™ possible paths of length m,
and m multiplications to perform at each step. However, we can use the following dynamic programming
algorithm, called the forward-backward algorithm [Rab89], to compute it in O(mn?) time. We define oy (%)

as the probability of a walk from the start state to state ¢ labelled by @1 .. .2 o (7) def Pr(zy ...z, g = 4).
We can compute this inductively as follows. For the base case, we set ag(i) = m(¢), and for the induction



step,
ar(j) = D arm1 (i) Prigi —5q;).

Then we set Pr(z) = ", oy, (4).

The forward-backward algorithm can be used to evaluate the probability that an output-NPFA generated
a string. If we imagine a process uniformly generating strings and sending them to an input-NPFA| then
we can use the forward-backward algorithm to evaluate the probability which the automaton induces on its
inputs.

2.3 Hidden Markov Models and Markov Chains

There are two definitions of a Hidden Markov Model (HMM). The most common one is when each state has a
probability distribution Pr(a|q) over symbols which are emitted (hence the states are “hidden”), and another
(independent) distribution Pr(¢’|¢) over transitions (hence the underlying topology is a Markov chain).
This is clearly the same as an NPFA in which the transition and emission probabilities are conditionally
independent, since Pr(a, ¢'|¢) = Pr(alq) - Pr(¢’|q).

The other, less common definition of an HMM associates probabilities with the arcs, that is, it specifies the
joint distribution Pr(a, ¢|¢). This is exactly the same as our definition of an NPFA. The advantage of this
formulation (besides removing the independence assumption) is that one can have silent arcs, that is, arcs
that emit A, the empty symbol. This can be useful for “skipping over” parts of a model, or for “looping
back”; see [Rab89] for some examples in the context of speech recognition.

To see that HMMs cannot be converted into a DPFA,| note that the transition probabilities are independent
of the symbol, and hence the next state is not fully determined by the current state and the current input;
alternatively, we can think of each transition being labelled by A, but since there may be several such arcs,
this results in non-determinism.

We now consider a subclass of DPFAs, called Probabilistic Suffix Automata (PSAs), and show how they can
be used to succinctly model variable order Markov chains [RST93, RST94]. In a PSA, every state is labelled
by a finite length string in X*. If every label is at most length L, we call it an L-PSA. The label encodes how
much “history” we pay attention to. (To ensure this condition, we require that, if there is an arc p g,
then the label of ¢ should be a suffix of s-a, where s is the label of p, and s-a denotes string concatenation.)
If the set of states is (labelled by) all of %, we have an order L Markov chain, since the next state transition
probability depends on the last I symbols. However, if some states need a shorter memory length than L,
a PSA is a much more compact representation than a Markov Chain, and hence easier to learn.

2.4 Fuzzy automata

We just mention in passing that using probabilities is not the only way to extend DFAs. Another method
uses fuzzy logic — see [Mic90] for a few references.

10



3 Learning DFAs

3.1 Definition of success

Our goal will be to find the smallest automaton which 1s compatible with the input. In the limit of infinite
data, this will be equivalent to the target concept we are trying to learn.

Since this is a difficult goal to achieve, often we will find it acceptable if, with high probability, we can learn
a model which is approximately equal to the target concept. This notion, called PAC-learning (Probably
Approximately Correct), is due to Valiant, and is discussed further in [Ang92, KV94]. The formal definition
is given below.

Definition 2 Let X be the problem instance space, C be a concept class over X (i.e., a set of subsets of
X ), and H be a hypothesis class over X (i.e., a set of representations for (at least) every function in C).
(Example: X is ¥, C is the set of regular languages, and M is the set of DFAs.) We say that C is PAC
learnable using H f there exists an algorithm L with the following property: for every target concept ¢ € C, for
every distribution D on X, and for all error parameters 0 < ¢ < 1/2 and confidence parameters 0 < 6§ < 1/2,
if L is given random examples of ¢ drawn according to D, then with probability at least 1 — &, L outputs a
hypothesis concept h € H such that € > error(h) = Pryeple(x) # h(x)]. If L runs in time polynomial in
1/e, 1/, n (the dimensionality of the instance space), and size(c) (the size of the concept under some fized
representation scheme), we say that C is efficiently PAC learnable.

3.2 Complexity results

A complete presentation of a language L is an ordered sequence of all the strings in X* labelled as either
positive (being in L) or negative (not in L). A positive presentation just consists of all the strings in L. We
assume L could be an infinite set. Gold [Gol76] showed that it is not possible to exactly identify L, even
in the limit of infinite data, given only a positive presentation. This seems to be a paradox in view of the
fact that humans seem to learn languages from only positive examples. However, we will see later that it is
possible to identify in the limit with probability 1 a stochastic regular language from only positive examples.

In practice one only ever sees a finite sample. A uniform complete sample is the set of all labelled strings
of length at most m. We will see later that there is a simple algorithm, which runs in time polynomial in
the number of nodes in the input tree, and which can learn the minimal FSM (i.e., the one with the least
number of states) consistent with such an input set. If the sample isn’t uniform complete, and is missing
even an arbitrarily small fixed fraction 0 < € < 1 (i.e., the input contains only (|]X"|)¢ strings) then Angluin
[Ang78] showed that the problem is NP-hard. Obviously, therefore, the case of learning the smallest DFA
consistent with an arbitrary set of positive and negative examples is also NP-hard [Gol78, Ang78]. Even
learning near-minimal DFAs, or PAC-learning DFAs, is hard: Pitt showed that learning a near-minimal DFA
(i.e., one with n* states, where n is the minimal number of states, for some fixed k) is NP-hard [PW93],
and Kearns and Valiant [KV89] showed that PAC-learning a DFA with any reasonable hypothesis class is as
hard as breaking various cryptographic protocols which are based on factoring.

However, these are only worst case results, and on average, we will see that we can do quite well, even with
sparse input sets.
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Figure 1: The best hypotheses produced by the Porat and Feldman iterative algorithm as a function of
sample size. The language is the “even a’s” language (i.e., the input set is +A, —a, +b, +aa, —ab, .. ), and
the rightmost DFA is the correct minimal automaton. Dotted lines denote mutable links (which may be
subsequently deleted), solid lines denote permanent links. | denotes A, the empty string. 0 is an accept state,
1 1s a reject state.

3.3 Top-down algorithms
3.3.1 Exactly learning DFAs using an ordered complete presentation

Porat and Feldman [PF91] give an online algorithm for incrementally learning DFAs, i.e., at each step, they
output a DFA which is the best guess so far (in the sense of being the smallest model consistent with the
data seen so far), based only on the previous guess and the current input string. Hence the storage space
required is polynomial in n, the number of states in the minimal automaton. (By contrast, batch algorithms
store all the examples strings, and hence could take space exponential in the length of the longest string if
they are given a complete presentation.) The algorithm introduces a new state, complete with all possible
arcs to and from it, if the current example cannot be fit to the model, and arcs are pruned by subsequent
counterexamples. A worked example is shown in Figure 1. The algorithm takes O(n?) time and space.

Porat and Feldman require that the input be a complete, lexicographically ordered presentation of the
language (i.e., A, a, b, aa, ab, ..., where each string is marked as either + or -, and we have assumed
¥ = {a, b}), since they prove that no algorithm which uses a fixed amount of working storage (in addition
to the space required to store the current guess and example) can learn a DFA from an arbitrarily ordered
presentation. The inspiration for this was the fact that connectionist (neural network) systems use only
finite working space. Indeed, they show that they can implement their algorithm in a neural network. (We
will briefly discuss other neural network methods later.)

3.3.2 Exactly learning FSMs from an incomplete specification

Oliveira and Edwards [OE95] deal with the more general case of when the input consists of an arbitrary
set of consistent input/output pairs. This case arises in practice when synthesising FSMs from a partial
behavioral specification. The specification can be given in the form of an incomplete labelled prefix tree (see
Figure 2 for an example). (Hence this algorithm is a batch algorithm.) However, rather than adopting the
bottom-up approach of trying to merge states in this tree, which takes time exponential in ¢ (the number of
nodes in the tree)?, they adopt a top-down approach of walking over the specification tree, and growing the
current model whenever they encounter some transition which cannot be fit into the current model. This
runs in time which is exponential in n, the number of states in the final minimal automaton. (This algorithm
is similar to the one by Biermann et al. [BK76]).

5Exponential time may be necessary because we may need to consider all possible subsets of nodes, to find which ones should
be merged. [P173] proved the general problem of minimizing an FSM from a partial specification is NP-complete.
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In more detail, the algorithm works as follows. It tries to build a deterministic Moore or Mealy machine
with no more than n states which is compatible with the input seen so far. If no machine is found, one more
state is allowed, and we continue the search. (A lower bound on the number of states can be determined by
computing the size of the largest clique in the incompatibility graph, in which the vertices are the nodes in
the behavior specification, and the edges join nodes which cannot be merged because they have incompatible
behavior. Unforunately, max-clique is an NP-complete problem, so this may take exponential time.)

Suppose we already have a partially constructed machine M and we are in state g. We then try to fit the

next labelled transition g x—/y>q’ from the prefix tree into M. (¢ x—/y>q’ denotes an arc from ¢ to ¢’ which

converts the input string # into the output string y.) There are two possibilities:

e There is no such transition currently in M. The algorithm considers all possible ways of adding such
a transition, that is, all possible destination states. It makes a choice, and then recursively tries to
satisfy the rest of the specification. If this works, the choice was correct and the algorithm terminates
successfully. Otherwise, it backtracks and considers the next untried destination. It also considers the
possibility that the destination might be a new state.

e There already is a corresponding transition ¢ xﬁ)q’. If the outputs agree (y = y'), we can use this
transition, otherwise a previous decision must have been incorrect, so we backtrack.

They also give an implicit version of their algorithm, which considers all possible mappings from nodes in the
prefix tree to states, and “filters out” those that are inconsistent with the data. They use a package called
the Multi-valued Decision Diagram (MDD) method to implicitly manipulate the boolean functions which

enforce the output compatibility constraint (the fact that, if there are two arcs ¢ x—/y>q’ and ¢ x—/z>q’, then
y must equal z) and the transition compatibility constraint (the fact that the automaton is deterministic).
They show that the performance of this algorithm is comparable to their explicit enumeration method.

3.3.3 Enumerating all compatible automata of a given size

Gaines [Gai76] presents an algorithm which produces an exhaustive enumeration of all the n-state Moore ma-
chines which are compatible with the input. If n is too small, the Moore machine may be non-deterministic.
Each string 1s then “sent through” the machine, and the number of times each arc is transitioned is counted.
In this way, the transition probabilities can be estimated so as to minimize some error measure. Hence the
machine can also be probabilistic.

The algorithm returns what Gaines calls an admissible subspace of solutions, ordered by the two partial
orders of simplicity (namely number of states) and goodness-of-fit. It is then up to the user to make the
appropriate tradeoff. (We will study the Bayesian approach to this later.)

One interesting aspect of his algorithm is that it takes a single string as input. However, the algorithm might
be told that it contains special delimiter (end of string) symbols (and thus represents a set of examples),
and/or that, say, every odd symbol is an input and every even symbol an output. Naturally the algorithm
runs faster with this “side information”  but in principle it can infer it, by noticing, for example, that every
time a certain symbol is read, there is a transition back to the initial state (hence that symbol represents
the end of a string), or that every odd symbol is completely unpredictable (because it represents a random
input), but that every even symbol is predictable given its predecessor.

3.4 Bottom-up algorithms: minimizing canonical automata

13
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Figure 2: Canonical automata for the set of positive examples {bcbca, aaabca, aabcbea, aaa}. All states are
rejecting except for the leaves, and, in the case of the rightmost automaton, the internal states labelled as +.
If we want to represent an FSM, each arc can be labelled by an input/output pair; this is sometimes called a
behavioral specification. Left: the maximal canonical automaton (which is non-deterministic). Middle: the
prefix tree canonical automaton. (A prefix tree is also called a trie [AHU83].) Right: the DAG (Directed
Acyclic Graph) canonical automaton.
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We can always construct a canonical automaton M compatible with any given finite input set I, as illustrated
in Figure 2. (An automaton M is called canonical if L(M) = I.) What we would like is to find the smallest
automaton compatible with the input set. This can be achieved by minimizing the canonical automaton, by
merging equivalent states (nodes in the graph).

There is a simple algorithm for minimizing a given DFA with n states in O(n?) time and a slightly more
complex one which runs in O(nlogn) time [AU72, Hop71]. This algorithm uses an equivalence relation to
partition the states into equivalence classes. The relation is ¢ = ¢/ iff T(¢) = T'(¢'), where T(q) = {x :
d(q, ) € F} is the tail of ¢, that is, the set of strings accepted from state ¢. We will explain this method
later.

If the input set consists only of positive examples, then any automaton M’ derived from the canonical
automaton M by merging states will be compatible with the input set, since L(M') O L(M) = I. For
example, we could merge all the states and return the one-state automaton with L(M') = ¥*. There are
many different algorithms for this problem because they each embody a different tradeoff between model
size and over-generalisation (as measured, for example, by |L(M’) — L(M)|). When learning PFAs, we only
deal with positive examples, but in that case, we are interested in learning a probability distribution, and
there are well-defined notions of how good our answer is.

Unfortunately, when the input consists of labelled examples, we cannot apply these standard minimization
algorithms, since the input is no longer a DFA; rather, it is an incomplete specification of the behavior of a
DFA or FSM. It is incomplete because some arcs are missing. In the case of an FSM, we do not know what
output they should produce, and in the case of a DFA, we do not know whether the nodes they lead to should
be accepting or rejecting. Intuitively we must consider all combinations of ways of labelling these “don’t
know” nodes, which leads to exponential time behavior. Indeed, minimizing an incompletely specified FSM is
NP-complete [PI73]. Nevertheless, it is an important problem in the synthesis of sequential logic circuits, so
fast heuristic algorithms have been developed. There are basically two kinds, based on an explicit [HRSJ91]
or implicit [KVBSV94] enumeration of the compatibles. (A compatible is a set of states equivalent in the
sense that they can be merged without affecting the behavior of the machine. The number of compatibles
may be exponential in the number of states.) In practice, however, it seems that top-down strategies work
better than minimization strategies, at least for synthesising FSMs designed by human engineers, which may

be highly structured [OE95].

A special case 1s if we know that the machine which generated the data has only n states, and we are given
a uniform complete sample which contains all strings of length at most 2n — 1 and their labels; then 1t is
possible to reconstruct the original machine, as we will see next. (Of course, the set of all strings of length
at most 2n — 1 is exponentially large!)

3.4.1 Learning FSMs from a uniform complete sample: the Russian algorithm

We now describe an algorithm due to Trakhtenbrot and Barzdin’ [TB73] which forms the basis of much of our
subsequent discussion. We will call this the “Russian algorithm” for convenience. The input is a complete
labelled prefix tree of height 2n — 1. The algorithm has two phases. In the first, it makes a pass over the
tree in breadth-first (lexicographic) order to determine the states @Q; that is, it computes a mapping from
nodes in the tree to states in the machine. In the second, it finds the node corresponding to each state and
adds the out-going transitions from this state. The states are the equivalence classes induced by =, which
will be defined shortly. Let [n;] denote the equivalence class containing node n;. For each state (equivalence
class) [n;], we need to define one unique representative node; this can be any node in that class, but for
concreteness, we will take the first node added to that class, and denote it n;.

Input: a complete, labelled prefix tree T" of height 2n — 1
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Figure 3: A uniform complete tree. This can be regarded as specifying the input/output behavior of an
FSM. For example, the input 1111 gets transformed to 0101 (follow the path down the right edge of the tree).
The nodes with a black circle inside them are the states in the final minimal machine. All the other nodes
are labelled with the states they are indistinguishable from, because they have the same subtrees (where
defined). A and B are used to identify nodes discussed in the text. From Figure 15 of [TB73].

Figure 4: The minimal FSM realizing the tree in Figure 3. Taken from Figure 15 of [TB73]. The initial state

18 q1.

Output: the smallest FSM M consistent with T'
Algorithm:
Q=1
for each node n; in T' in breadth-first order

it An;] € Q@ st ny =ny

then add n; to [n;]

else Q := Q U[n;] /* make a new state */
for each [n;] € @

for each edge n; i)nj inT

add the transition [n;] —=[n;] to M

Two nodes n;, n; are equivalent (denoted n; = n;) if their tails, where defined, are equivalent; the tail of a
node 1s just the labelled subtree below it. A node ¢ specifies the behavior of the machine starting in state
g for the strings which appear in its tail. For example, node A specifies that 1111 should be transformed
to 0101, which we denote A(1111) = 0101. Nodes A and B are equivalent because they specify the same
behavior for the strings on which they are both defined, e.g., B(11) = 01 and A(11) = 01. In this case, there
are five distinct states, and the resulting minimal machine is shown in Figure 4. It is possible that in the
second phase, the child n; will belong to several equivalence classes (which is why some nodes in Figure 3
have several labels), in which case we can produce a family of equivalent deterministic FSMs.
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Figure 5: An example FSM with the greatest possible degrees of accessibility and distinguishability. +
denotes an accept state, - a reject state. Here, the machine accepts all strings € {0,1}% such that the
number of 1s in # is a multiple of 4. 0 is the start state. It is clear that we need a string of length 3 to get to
state 3. Also, to distinguish state 0 from state 1, we need a string of length 3 (since state 0 maps 111 to a
reject state, and state 1 maps 111 to an accept state). If we allow the empty string as an input (which does
not make sense for Mealy machines), then the degree of distinguishability is d <n — 2 = 2 [AU72, p.125].

3.4.2 The complexity of the Russian algorithm

When comparing two nodes for equivalence, it isn’t always necessary to compare the whole of their subtrees,
as we now show. We say two states ¢, ¢’ are k-distinguishable if there exists a word = of length at most
k, such that there is a path edge-labelled by z, starting in ¢, which ends in an accept state and another
path edge-labelled by =z, starting in ¢’, which ends in a reject state, or vice versa. Otherwise the two states
are called k-indistinguishable or k-equivalent, denoted ¢=rq’. (In the case of FSMs, we require that the
two paths transform z into the same output string, rather than requiring that they both label it as either
acceptable or not.) Two states are indistinguishable (equivalent) if they are k-indistinguishable for all .
In terms of the tree, two nodes are k-equivalent if the subtrees of height & below them are the same. The
subtree of height & below a node is also called its k-tail or k-signature. Indistinguishability is an equivalence
relation which partitions the states into indistinguishability classes.

The degree of distinguishability of a (minimal) FSM, d(M), is the minimal k& such that any two states are
k-distinguishable. The degree of accessibility of an FSM, a(M), is the minimal & such that any state is
accessible from ¢y by a word of length at most k. Trakhtenbrot and Barzdin’ show that, to reconstruct M,
we need a uniform complete sample of size at most X441 that is, a complete tree of height h = d+ a + 1.
(h is called the degree of reconstructibility.) This makes good intuitive sense: we need strings of length a
just to access the furthest states from ¢q; we then need an additional d characters to see if their children are
distinguishable. They also prove the following theorem.

Theorem 1 Consider a minimal FSM with n states, input alphabet ¥ and output alphabet Q. Then its
degree of distinguishability s bounded by

and its degree of accessibility is bounded by
loggyn—1<a<n-1

Furthermore, these bounds are the best possible.
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Though we shall not prove the theorem, the following example shows that the upper bound 1s tight: consider
an FSM which accepts strings z iff the number of ones in ¢ = zy25...2,, 18 a multiple of n. See Figure 5
for an example. The proof that the lower bounds are the best possible is somewhat trickier, and is omitted.

We are now in a position to state the complexity of the Russian algorithm. Let us define N (X, h) to be the
number of nodes in a complete |X|-ary tree of height h. Clearly

NER =224 45 = &

’ Xl-1

The worst case sample complexity (i.e., the number of strings in the input set) is therefore N(X,2n — 1),
which is approximately 22" when |X| = 2. The worst case time complexity can be computed as follows.
Clearly phase one is the slowest phase, and it makes up to 1+ ---+ (¢ — 1) = O(t?) equivalence comparisons,
where t = N(X,2n — 1) is the number of nodes in the tree. Also, each equivalence check may need to check
up to N(X,n— 1) ~ £ nodes, so the total time is O(¢?-%). This is approximately 2°" for binary alphabets.

The worst case complexity of the Russian algorithm is very high. Can we do better on the average? In fact
we can. To define the expected values of d and a, we have to specify what it is that we are randomising (and
hence what we are averaging over). The “maximally random” case, when both the topology and the labelling
of the states (as either accept or reject) are randomly chosen, is studied by Trahktenbrot and Barzdin’. More
recently, Freund et al. [FKR193] have studied the case where the topology may be adversarially chosen, and
only the labelling is random; such DFAs are called typical.

Trahktenbrot and Barzdin’ show that, in the maximally random case, “almost all” automata have degrees of
distinguishability and accessibility which are close to the lower bound. More precisely, E[d] = log|x;| log|q n
and Fla] = C'logjg n, where C'is a constant. Lang [Lan92] found experimentally (for ¥ = @ = {0, 1}) that
for a large fraction of randomly generated DFAs (with several thousand states), a < 2log,n — 2 and d < 4.
He therefore made the approximation that a uniform complete sample must be of size (22!°82n—2+4+14+1
1)/(2—1) = 16n%—1. Contrary to Angluin’s result [Ang78], he found that it was possible to (approximately)
learn these random DFAs quite well even if the training set only contained about 3% of the uniform complete
sample.

3.4.3 Learning random DFAs from sparse samples: the Greedy Russian algorithm

We briefly present Lang’s algorithm [Lan92], which is a variation of the Russian algorithm. Essentially he
combines the two phases of looking for states and then computing the transitions into one single pass over
the tree. When a node n; is found to be equivalent to a previous node n;, it means they have the same
subtree, so we can make the parent of n; point to n; instead, and discard n; and its children since they are
now inaccessible. (Hence the tree is transformed into a non-tree-structured graph on the way down.) An
upper bound on the running time is O(tn?), where ¢ is the number of nodes in the tree and n is the number
of states in the final, minimal machine. To see this, note that each state must be compared for compatibility
with every other state, and each comparison may involve checking up to ¢ nodes (walking the whole tree).

Lang proposes the following extension of this algorithm to deal with the case where the input tree is not
complete. In this case, the absence of a labelling conflict between the subtrees rooted at n; and n; does not
guarantee that the two nodes correspond to the same state in the smallest consistent machine. However, we
can be greedy and merge the nodes anyway. This requires “overlaying” the subtree below n; onto the subtree
below n;, before it is discarded. This involves making the parent of n; point to n;, as before, and recursively
merging each of the children of n; with the corresponding children of n;, to remove any non-determinism.
However, this process might produce a conflict, because the subgraph can contain cycles and other non-tree
features. See Figure 6 for an example of such a conflict. Thus one cannot pre-check the legality of a potential
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Figure 6: The prefix tree for the training set 10 — accept, 1110 — reject. 4+ denotes accept states, - denotes
reject states, other states have unknown polarity. The first step in Lang’s algorithm is to try merging states
A and B. Walks at A and B don’t reach C and G simultaneously, so no conflict is detected. However, when
A and B are combined, D and E get merged in as well, which causes C to be merged with G, which is a
conflict. (Lang, 9/7/95, personal communication.)

merge by a simple walk starting at the two nodes. Lang’s solution is to “optimistically perform a destructive
merger of the subtree and subgraph while keeping backup copies of modified nodes so that the work can be
cheaply undone if a labelling conflict is detected.”

Later we will study several algorithms for learning PFAs, which are very similar to Lang’s and involve
merging equivalent states. However, the input only consists of positive examples, so these labelling conflict
complications do not arise. In fact, we cannot learn a DFA from positive data only; it is the repeated
presentation of strings (with frequency proportional to their probability) which compensates for the lack of
negative examples in the PFA case.

3.4.4 Learning typical DFAs from a random walk

A “typical” automaton is one in which the states are randomly labelled as accept or reject, but the topology
may be arbitrary (possibly adversarially chosen). Freund et al. [FKR93] extend the definitions and theorems
of the somewhat less random case considered by Trakhtenbrot and Barzdin’ as follows.

Definition 3 We say that uniformly almost all automata have property P, 5 if the following holds: for all
d > 0 (where § is a confidence parameter), for all n > 0 (where n is the number of states), and for any
underlying automaton graph Gas on n nodes, if we randomly choose {+,—} labels for the states, then with
probability at least 1 — 6, P, s holds for the resulting automaton M. Such an automaton is called typical.
If the topology is also randomly chosen, we drop the word “uniform” (since the property P might not be
“spread” uniformly through the space of all automata with n states).®

Theorem 2 For uniformly almost all automata (with binary input and output alphabets), the degree of
distinguishability 1is at most 2log(n?/38), where § is a confidence parameter (this is “one logarithm worse”
than the bound for the non-uniform case). Hence for d > 2log(n?/§) uniformly almost all automata have
the property that the d-signature s unique, where the d-signature of a state is its depth d subtree.

Because the signature is so short, we can hope to construct the signature of each state just by performing a
random walk on the underlying graph. In particular, Freund et al. propose that a “robot” receive a random

6 Trahktenbrot and Barzdin’ define the phrase “uniformly almost all” in an asymptotic way, namely: uniformly almost all
automata have property P if § — 0 as n — co.
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input bit at each step, and then predict the output of the current state as either + (accept) or — (reject).
It 1s also allowed to predict 7, called a default mistake, after which it will observe the correct output, and
then return to the start state. (They also give a more complicated algorithm in which ? does not return the
robot to the start state; this has slightly poorer performance.) Since each signature is unique, the robot can
recognize when it returns to a state, and hence can fill in the transition data. They prove that, for uniformly
almost all n state automata, their algorithm is efficient (runs in time polynomial in n and 1/§), makes no
prediction mistakes, and makes an expected number of default mistakes that is at most O((n%/§?)log(n/d)).
This algorithm can be extended to learn a (restricted kind of) DPFA, by counting the number of times each
transition is made.

3.4.5 Approximately learning DFAs with the k-tails algorithm

Recall that two states ¢, ¢' are k-equivalent if they are not distinguishable by any string « such that |z| < k.
In other words, they have the same k-tails. Clearly

_ , q=rq’ and
q=k+1 4 @{ Va € X :6(q,a)=10(¢, a)

Also, it can be shown [HUT9] that any partition of the states induced by = will lead to the minimal DFA.
This suggests the following iterative strategy for minimizing a DFA, known as Moore’s algorithm [AU72].

k=0
compute =g
while £ <n —2 and =3#=,_; do
k=k+1
compute =g in terms of =;_,
merge the k-equivalent states

This can be implemented to run in O(|X|n?) time as follows [HU79]. Construct an n x n array and mark
cell (i,7) (and (j,7)) as soon as ¢; and ¢; are found to be distinguishable. Start by marking (¢, j) for all
¢; € F.q; ¢ F. Then, for each pair of distinct states p, ¢, if, for some @, their children » = §(p,a) and
s = 0(q, a) are distinguishable by some string #, then p and ¢ are distinguishable by ax, so mark cell (p, q)
and dependents. Otherwise, (p,q) is placed on a list of dependents associated with the (r,s) entry, and if
(r, s) subsequently receives a mark, so will (p, ¢). Since each pair (p, q) is considered at most |X| times (it
could be on up to |X] lists), the running time is O(|X|n?).

As Miclet [Mic90] points out, the k-tails algorithm of Biermann and Feldman [BF72] can be thought of
as running Moore’s algorithm but terminating at a particular value of k. If we stop at a low value of k,
the resulting machine will be small but highly non-deterministic (and therefore not equivalent to the target
DFA). If we stop at a value of k which is greater than or equal to n — 1, then we will return the minimal
machine which accepts the input set, namely the DAG canonical automaton.” See Figure 7 for a worked
example.

3.4.6 The k-tails clustering algorithm

In the k-tails algorithm, we defined two states to be k-equivalent if their k-tails were equal. We can consider
other measures of similarity between k-tails, and then use a clustering algorithm to group the k-tails (now

"Interestingly, Biermann and Feldman independently arrive at the result of Trakhtenbrot and Barzdin’ that to uniquely
reconstruct the FSM which generated the input set, we need a uniform complete sample of all strings of length at most 2n — 1.
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qg k=0 k=1 k=2 k=3 k=4
1 0 0 0 aaa aaa

2 0 0 0 0 chca

3 0 0 0 beca bca

4 0 ) ca ca ca

5 0 a a a a

6 A A A A A

7T 0 0 aa aa aa

8 a a a a, abca
9 A A A A, bca A, bca

Table 2: The k-tails of each state of the DAG DFA in Figure 2 as a function of k. A denotes the empty
string.

ab,c

(oo )
- ac a
: )
b
abc
k

=0 k=1

k=3

Figure 7: The DFA returned by the k-tails algorithm as a function of &, for the input set { bcbea, aaabca,
aabcbca, aaa}. For k = 4 the algorithm returns the DAG canonical automaton in Figure 2. See Table 2 for
the details of the computation.
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viewed as “points” in a space of dimension ¥¥). Since we can always reconstruct a DFA given its set of
k-tails (for k > n — 2), in some sense each state is uniquely identified by its k-tail. Hence, if two k-tails
are similar (in the same cluster), their corresponding states should be merged. Miclet [Mic80] calls this the
k-tails clustering algorithm. (Note that clusters are not the same as blocks in a partition, since we are not
claiming that two states in the same cluster are equivalent, just that they have similar k-tails.)

We have to specify how the cluster will change when we add a new point to it. To save time, Miclet
makes the approximation k(qUq’) = k(q)Uk(¢’) (where k(q) is the k-tail of ¢), whereas the exact relation is
k(qUq') D k(q)Uk(¢') (since when you merge states, more strings become acceptable).

We also have to specify the distance measure between two clusters. He proposes two rather ad hoc measures
of distance between k-tails, a “global” one

di (k(q), k(¢")) E min{[k(q)| — |k(q)Nk(g")], Ik(g")] — [k(0)Nk(q")]}

which measures the number of strings they do not have in common, and a more “local” one based on the
edit distance ds(z, ') between two strings

do(k(q), k(¢')) ' max ST do(e, )
xek(q)x'ek(q’)

which measures the worst-case total number of changes needed to convert a string & in one k-tail to every
other string #’ in the other k-tail.

He then uses a hierarchical (bottom-up) clustering algorithm® which repeatedly looks for the nearest two
points and merges them, until no two points (k-tails) have any common strings. He starts with & = ¢ — 2,
where t 13 the number of nodes in the prefix tree, and decrements it at each step. This proves to be more
effective than the k-tails algorithm on test cases consisting of small, hand-crafted DFAs.

3.5 Other methods
3.5.1 Actively learning DFAs with oracles

In view of the hardness results on passively learning DFAs with arbitrary input, a number of people have
proposed equipping the learner with an oracle, which the learner can ask questions. This is called active
learning, or learning with queries; for a good account of actively learning DFAs, see [KV94]. Angluin [Ang87]
showed that the learner must be able to ask both membership queries (is z in the language??) and equivalence
queries (is the hypothesis M’ equal to the target concept M, and if not, please give me a counterexample)
in order to exactly learn DFAs in time polynomial in n and the length of the largest counter example. We
can get by without the equivalence queries, and just use random examples and membership queries, if we
are content to PAC-learn the DFA.

In the oracle membership model, we assumed that the target DFA returns to the reset state before answering
whether  is in the language. If this 1s not the case — the so-called no-reset model — learning becomes
much harder, because the learner starts in an unknown state and ends up in an unknown state. However,

8For a good review of clustering algorithms, see [Seb84, ch. 7]

9 Asking whether a string is in the language is like performing an experiment in which the string is “fed into” the black box,
and we observe whether it is accepted or rejected. In the more general case of inferring the structure of an FSM from a series
of experiments, see [Con71]. (See also Exercise 3.22 in [HU79].)

22



Rivest and Schapire [RS89] show how the DFA can still be learnt in this case, by using homing sequences.
Intuitively, a homing sequence is an input sequence which, when executed, may allow the learner to determine
“where it is” in the machine, based on the observed output sequence. Freund et al. [FKR¥93] show how
to extend this method to the case of passively learning typical DFAs from a random walk, (i.e., learning
random DFAs without an oracle) in the no-reset case. Rivest and Schapire need an equivalence oracle for
their homing sequence method, whereas Ron and Rubinfeld [RR95] do not; however, their algorithm only
works for DFAs with small cover time!?, which intuitively means that all the states in the DFA are easy to
get to (Angluin’s proof relies on states which are hard to reach).

3.5.2 Neural network methods

Minsky [Min67] proved that “every FSM is equivalent to, and can be simulated by, some [recurrent] neural
network”. However, this does not imply that it is easy to learn the structure of an unknown FSM using
a neural network (NN). The main problem is that FSMs are discrete (they define operators over discrete
valued alphabets, and have a discrete set of internal states), whereas NNs are continuous (they define
functions over real-valued vectors, and have real-valued internal states). Consequently, most early attempts
to learn DFAs with recurrent NNs (both first and second order) from positive and negative examples were
not very successful: they took a long time to run, and couldn’t even learn machines with as few as 5 states.
More recently, Das and Mozer [DM93] have suggested clustering points in the hidden layer’s state space
before passing it on to other layers, to encourage the formation of discrete representations during training.
Unfortunately, since they use a different test set from the other algorithms mentioned in this section, it is
hard to compare empirical results, and no theoretical results exist.

4 Learning DPFAs

4.1 Definition of success
4.1.1 Goodness-of-fit to the data

As we mentioned earlier, the goal of learning PFAs is to approximate the target distribution to within
some precision given only a finite training sample. The definition of acceptable precision is captured in
the following definition, which comes originally from [KMRT94], and which has been used subsequently in
[RST94, RST95]. It is inspired by the definition of PAC-learning a concept, given earlier.

Definition 4 Let M be the target PFA we are trying to learn, and M be a hypothesis PFA. Let PM qnd PM
be the two probability distributions they generate on X, respectively. We say that M s an e-good hypothesis
with respect to M, for e > 0, if

D(PM pMy < ¢

where D(PM,PM) 1s some measure of distance between these two distributions. An algorithm is said to
efficiently learn a PFA M if, for any M, €,6 > 0 and random sample, it outputs an e-good hypothesis with

L 1 12| and n, where n is the number of states in

probability at least 1 — &, and runs in time polynomial in -, 5,

the target PFA.

10The cover time of a DFA M is defined to be the smallest integer ¢ such that for every state of ¢ in M, a random walk of
length ¢ starting from ¢ visits every state in M with probability at least 1/2.
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Several measures of distance between two probability distributions (with set of support ') have been pro-
posed, including the x? distance, the L; distance, the variation distance, the quadratic distance [KS90], and
the Hellinger distance [BC89]. However, we shall use the popular Kullback-Leibler divergence (also known
as the cross or relative entropy [CT91]), defined by

D)

Drr(PlQ)E Y P(x) log 5.5

zeX
We think of P as being the true, target distribution, and @ as being our best guess.

Strictly speaking, KL divergence is not a distance, since it only satisfies one of the three necessary properties
of a metrict’. Nonetheless, it upper bounds (some simple function of) the other measures, so if we achieve
closeness in the KL sense, we achieve closeness with respect to the other measures, too. Let us briefly see
why this is so.

The L; norm is defined as

1P=Qlh € Y [P(2) - Q(x)]

zeX

the Lo norm (quadratic distance) as

S5

def

1P =@Qll2 =

> (Pa) - Q(r))zl

zeX

and the variational distance as

max(P(B) - Q(B)) = %.

Now, it can be shown [CT91, p.300] that Dg(P||Q) > 515/|P — Q|3 so that if Dgr(P]|Q) < €, then
[|IP— Q|1 < Ve2ln2, which is less than € when € > 2In2 = 1.36. Tt can be shown that the L; norm bounds

the Lo norm.
Note that the L., norm, defined as

1/n
1P~ Qll = lim |3(P(e) - Q(x))”] = max|P(2) - Q(z)|

xr

behaves rather differently, since it does not consider the sum of the deviations, but rather the single largest
deviation. Thus requiring two distributions to be close in the L, sense is a much more stringent requirement
than requiring them to be close in some aggregate sense. This will turn out to be the crucial difference between
those classes of PFAs which are efficiently learnable and those that are not efficiently learnable, as we will
see.

1A metric d(z,y) should satisfy (1) d(z,y) = 0 iff = y. (2) d(»,y) = d(y,») (symmetry). (3) d(z,z) < d(=,y) + d(y, 2)
(triangle inequality). The KL divergence only satisfies (1).
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The KL divergence enjoys several other nice properties, as we now show [AW92]. Firstly, note that
Drr(P|lQ) = Eplog(1/Q(:)) — H(P), where H(P) = 3 ., P(x)log(1/P(x)) is the entropy of the dis-
tribution P. Since log(1/P(x)) is the length of the code word for z in an ideal (minimal length) code,
Dgr(P||@) measures the expected additional code length (beyond the ideal code) needed to encode future
data if we think the distribution is @ but actually it is P; hence choosing the @ which minimizes Dy (P]|Q)
will give us the minimal length encoding.

Now suppose P is the empirical distribution of the data X'. Finding the @ which minimizes Dy (P]|Q)
corresponds to minimizing

Eplog(1/Q()) = %;m e %bgg( o

which corresponds to maximizing [[, . @(), i.e., the likelihood of the sample.

4.1.2 Model simplicity

So far we have only considered how well our model fits the data, but of course we are also interested in
learning simple models, since they generalize better, that is, perform better on data which was not part of
the training set. Enumerative algorithms, which generate every possible model in turn, will obviously find
the simplest model, but since the number of possible models grows exponentially in the number of states,
these algorithms are too inefficient to be useful. “Top down” algorithms, which only add states when forced
to by the data (e.g., [RST94]), will also often find the simplest model (but not always, since they may not
be able to delete states in the light of new data). So model simplicity is mainly a concern with “bottom up”
algorithms, which start with a model which exactly fits the data (such as a canonical automaton) and then
proceed to merge similar states.

There are two kinds of errors a bottom-up algorithm can make: type 1 errors, in which two equivalent states
are not merged, and type 2 errors, in which two non-equivalent states are merged. If there are many type
1 errors, the resulting machine will be unnecessarily large; we can reduce the type 1 error rate by loosening
our definition of similarity (at the risk of introducing more type 2 errors). If there are many type 2 errors,
the inferred distribution will not be close to the target distribution; to reduce the type 2 error rate, we can
make our definition of similarity more restrictive (at the risk of introducing more type 1 errors). Carrasco
and Oncina [CO94] show that in their algorithm, the type 2 error rate vanishes in the limit of infinite data,
and hence they can achieve identification in the limit with probability 1.

Stolcke and Omohundro [SO92, SO94] adopt a Bayesian approach in their bottom-up algorithm, and attempt
to learn the HMM which has the greatest posterior probability, i.e., which maximises Pr(M |z). (This is called
the Maximum A Posteriori (MAP) model.) Bayes’ theorem tells us

Pr(M|z) = Pr(M)Pr(x|M)

Pr(x)
so if we assign higher prior probability to simpler models, we can trade off model simplicity Pr(M) with
goodness-of-fit Pr(z|M). Stolcke et al. achieve this by using a prior based on the description length of the
(structure of the) model. This introduces a bias towards models with fewer states. (This bias is called an
Occam factor).
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4.2 Complexity results

Abe and Warmuth [AW92] showed that PFAs are trainable in time polynomial in €, § and m (the length of
each input string), but not in |X|, assuming RP # N P.12 However, this is a representation dependent result,
that is, it assumes the hypothesis (as well as the target) must be a PFA. It is known that if the hypothesis
class is allowed to be more general than the concept class, otherwise intractable problems sometimes become
tractable. For example, assuming RP # NP, the class of 3-term DNF formulae is not efficiently PAC
learnable unless we use 3-CNF to represent our hypotheses (see [KV94]).13 However, Kearns et al. [KMRT94]
prove that, under a certain assumption'? it is not possible to efficiently PAC learn PFAs using any kind
of hypothesis, when the hypothesis must be an evaluator. If the hypothesis is allowed to be a generator,
they are only able to prove that learning distributions generated by polynomial sized circuits (a much larger
class) is intractible. Since their proof is fairly simple, and also quite enlightening, we shall present it here.
But first we must define the conditions under which it holds, namely under the Noisy Parity Assumption.

A parity function f,(z) takes # = x; ...z, as an argument, and then computes the parity of the bits of x
specified by its binary subscript @ = a; ... a,, which can be thought of as a bit mask:

n

fa(x) = Zaixi (mod 2)

i=1

The parity problem is to find the vector a given a set of examples (z, fo(x)). This is easy to solve. The
noisy parity problem is when the parity of the examples may be incorrect with probability 0 < n < % That
is, the input set consists of pairs of the form (z,!), where { = f,(x) with probability 1 — 5 and | = = f,(x)
with probability 7. The Noisy Parity Assumption is the assumption that this problem cannot be efficiently
solved in the PAC model when the example strings are chosen uniformly; there is good evidence for it.

Theorem 3 Under the Noisy Parily Assumplion, the class of distributions over {0,1}" generated by a
DPFA 1s not efficiently learnable with an evaluator.

Proof.

The basic idea is that for any parity function f,(-), we construct a PFA whose distribution is uniform on
the first n bits of #, and for which ®,41 = fo(21...2,) with probability 1 — n, and the complement of
this with probability 7. Thus the PFA will generate noisy labelled examples of f,; call this distribution
D,. The construction is illustrated in Figure 8. Now suppose we have a hypothesis evaluator D which
approximates D, i.e., which has learnt the PFA. Tt can be shown that we can determine f,(z) for any
z € {0,1}" to arbitrary precision, which violates the Noisy Parity Assumption. In particular, suppose
KL(Dy||D) < ¢(1 — H(n)), where H(n) = nlogn+ (1 —n)log(1 — n) is the binary entropy function. Then
for a random x € {0,1}", we can determine f,(x) with probability 1 — ¢ by saying the parity bit is 0 if
D(20) > D(x1), and 1 otherwise. |

There are several interesting things about this proof. First, it applies to deterministic, acyclic, levelled
(layered), width two PFAs with binary alphabets. Clearly more general kinds of PFAs are going to be at

12NP is the set of languages for which we can test membership in polynomial time (but it may require exponential time to
generate such members). RP is the set of languages for which we can test membership with probability at least 1 — § using a
randomized algorithm which runs in time polynomial in 1/ and the length of the string.

12 A 3-term DNF (Disjunctive Normal Form) formula is a disjunction of three conjunctions, e.g., (pAg) V (=pAr AsAt)V(=g).
A 3-CNF (Conjunctive Normal Form) formula is a conjunction of disjunctions, each of which contains exactly three literals,
eg,(pVgVr)A(sVpV-p).

14Tn [GS94], they give an information-theoretic argument, which does not make any assumptions, that learning a hidden
Markov chain is hard.
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Figure 8: Constructing a noisy parity function using a PFA. The state (¢,0) in the top row indicates that
the first ¢ bits of # that we have examined (as determined by @) have even parity. Similarly, the states in the
bottom row store the fact that the parity so far is odd. Whenever a; = 1, we switch “tracks” on encountering
a 1, since this indicates that the parity has just changed. If a; = 0, we don’t switch tracks, since we are
ignoring bit ;. At the end, we emit the correct parity symbol with probability 1 —# (in the figure, e denotes

n).

least as hard to learn. Secondly, the distance in the L; norm (and hence also the KL-divergence) between
the distributions generated starting from every pair of states i1s large. To see this, consider two states p, g
and their corresponding distributions P, Q. If p and ¢ are on different levels, the distance between P and
@ will be large simply because they generate strings of different lengths. So suppose p and ¢ are on the
same level [. For every string s of length n — [, if s has even parity, then starting from the even parity state
the string s0 is generated with probability 2_(”_l)(1 — n) and the string sl is generated with probability
2=(=Op The opposite is true starting from an odd state. Even though each of these differences is small
(especially for small {), their sum is 2(1 — 27), and assuming 7 is bounded away from %, this is large.

1P=Qll = Y [P(s0) = Q(s0)| + |(P(s1) = Q(s1)]
= 27712700 ((1 = 2m) + (1 — 27))
= 2(1-2ny)

By imposing an extra condition on the class of Acyclic, Deterministic PFAs (APFAs), Ron, Singer and
Tishby [RST95] prove that it is possible to efficiently learn this class using an algorithm we will study later.
(They also conjecture that it is possible to learn cyclic DPFAs (with the distinguishability property) using
their algorithm, but were unable to prove this case.!5) The extra condition they impose is that the APFA
be p-distinguishable, defined as follows.

Definition 5 We say that two states q1, q2 are p-distinguishable if there exists a string s for which |qu‘1/[(5) —
qu‘f(s)| > u. We say that a PFA M s p-distinguishable if every pair of states in M s p-distinguishable.

This can be thought of as the probabilistic extension of k-distinguishability. Note that the distributions
between any pair of states in the noisy parity PFA are far apart in the L, sense, but not in the L., sense,
and hence are not p-distinguishable.

Finally, we mention a result on the complexity of learning PFAs with oracles. Tzeng [Tze89] discusses how to
learn an input-PFA when the input consists of a set of strings and the corresponding probability distributions

*Dana Ron, personal communication, 8/15/95.
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Figure 9: An illustration of merging states. A is the original canonical automaton. B is the result of merging
nodes 1 and 2, and corresponds to a non-deterministic automaton. C is the result of merging all the children
of 1 and 2. Solid edges are transitions labelled by 0, dashed egdes (which always lead into leaves) are labelled
by the final symbol, and dotted edges are labelled by 1. Adapted from Figure 1 of [RST95].

they induce on the states, i.e., the probability that the automaton ends up in each state after accepting the
string. He shows this problem is NP-complete (see also [GS94]). However, if the learner is given access to
an oracle which can specify the probability distribution induced by any string, then the input-PFA can be
learnt in polynomial time. He assumes throughout that the probabilities are rational.

4.3 The Spanish algorithm

The algorithm due to Carrasco and Oncina [C0O94], which we call the “Spanish” algorithm for brevity, is
basically a stochastic version of the “Greedy Russian” algorithm we discussed earlier. The difference is
that the input is now a multiset of positive strings instead of a set of positive and negative strings. Also,
the definition of equivalence between two states is changed to take probabilities into account: two states
q,q are defined to be similar if they assign similar probabilities to each of the branches in the first level of
their subtree, and, recursively, if their corresponding children are similar. (We will define what it means for
two probabilities to be similar shortly.) The recursive part of the definition effectively implies that all the
corresponding branches in the subtrees below ¢, ¢’ must be similar in probability. When ¢ and ¢’ are merged,
the automaton may become non-deterministic, but since their children are similar, they will subsequently
be merged, removing the non-determinism (see Figure 9).

The definition of similarity which they use is motivated by the following bound, due to Hoeffding, on the
probability that a Bernoulli random variable with expected value p deviates from its empirical mean given
by f successful trials out of n:

1 2
‘p - i‘ < 4/ z—log — with probability larger than (1 — ¢).
n 2n €

They reject the equivalence of two nodes only if the two estimated probabilities differ by an amount which
is greater than the sum of their confidence bounds. The empirical probabilities which are being compared
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are defined as follows. Let m, denote the number of strings arriving at u and my(¢) the number of strings
leaving u via an arc labelled o. Then the probabilities on two nodes u and v are similar if for all ¢ € ¥,

|%uﬂ - %}“ <4/%log %(\/;m—u + \/;m_v) The advantage of this criterion is that it is sensitive to the sample
size: nodes lower down the tree will have lower counts, so the criterion for similarity is relaxed to allow for
bigger fluctuations.

They show that 1t is possible to choose a value for ¢ such that, in the limit of infinite data, the probability
of type 2 errors (merging non-equivalent nodes) vanishes. It is also possible to reduce the type 1 error rate
(rejection of compatibility between two equivalent nodes) provided one has a larger sample to compensate for
the increased frequency of type 2 errors. This algorithm can therefore learn arbitrary DPFAs with probability
1 in the limit, from positive examples only.

4.4 The APFA algorithm

Ron, Singer and Tishby [RST95] present an algorithm which is very similar to the Spanish algorithm, in that
it merges states based on a probabilistic similarity criterion. The difference 1s that they can characterize
precisely how well the algorithm will perform on finite data sets. In particular, they show that if the sample
size is large enough, they can return an e-good hypothesis with probability at least 1 — ¢ for any ¢ and 4.
Furthermore, the algorithm is efficient.

Of course, in view of the hardness results we discussed above, they must impose certain constraints to achieve
these goals. Namely, their algorithm can only learn acyclic DPFAs (APFAs) which are p-distinguishable
(defined above). They speculate that the acyclicity condition is inessential, but needed it to make the
proof go through. In fact their algorithm works on levelled acyclic APFAs; in which each node only makes a
transition to the next level, except for transitions labelled by the final symbol (which denotes the termination
of each string), which may “hop over” to the final node in the lowest level. However, every APFA having n
states and depth D can be converted into an equivalent levelled APFA with at most n(D — 1) states, so this
i1s not a major restriction.

The algorithm takes as input a confidence parameter §, an error tolerance ¢, a bound on the number of
states n, and a distinguishability parameter p. (The latter two assumptions can be removed by searching for
an upper bound on n and a lower bound on p.) It then proceeds to merge similar states within each level
(thus keeping the graph acyclic), provided their counts exceed some minimum value mg (which is given in
the proof). This prevents nodes whose counts are too low to be reliable from being merged.

The definition of similarity is similar to the Spanish case: Two nodes u and v are similar if for every string
s, |my(8)/my — my(s)/my| < p/2, where my (s) is the number of strings leaving v which have s as a prefix,
and m, is the total number of strings leaving v (i.e., its count). This can be computed by performing a
depth-first search over the tails (subtrees) of 4 and v. The reason this does not take exponential time is that
we don’t need to examine every string of length equal to the longest distinguishing string: they can prove
that, if the sample is big enough, there will be a string which distinguishes every pair of non-equivalent states
of sufficient weight with high probability (because the machine is p-distinguishable), and as soon as such a
witness is found, we can quit searching the subtree.

At the end, for each level ¢ in turn, all nodes which have too low a count are merged into a special node
called small(¢). The emission probabilities are estimated by the following smoothing formula:

Pr(ofg) = (mu(o)/mu)(1 = (1% + 1)Ymin) + Ymin

where vpmin 1s a constant specified in the analysis of the algorithm. Smoothing is necessary to avoid saying
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that something has zero probability (and hence is impossible) just because it hasn’t been seen in the data
set.

4.5 The PSA algorithm

We have already defined Probabilistic Suffix Automata as a kind of DPFA | which can be viewed as a variable
memory Markov chain. As a reminder, every state is labelled by a finite length string in X*. If every label
is at most length L, we call it an L-PSA. The label encodes how much “history” we pay attention to. (To
ensure this condition, we require that, if there is an arc p ——¢, then the label of ¢ should be a suffix of s - a,
where s is the label of p, and s - a denotes string concatenation.) If the set of states is (labelled by) all of $,
we have an order L Markov chain, since the next state transition probability depends on the last L symbols.

Ron, Singer and Tishby [RST94] show how to efficiently PAC-learn a PSA using a Probabilistic Suffix Tree
(PST) as the hypothesis representation.'® We shall just give a brief sketch of their algorithm.!” Start with
the empty tree and add a new node v with label s when given a string s only if, for some symbol o, the
empirical probability of seeing o following s differs susbtantially from the empirical probability of seeing o
following suffix(s), the string labelling the parent of v. This is a top-down approach, since it incrementally
grows the tree. A bottom-up approach would consist of building the PST for the whole dataset, and then
trimming nodes which don’t meet the above criterion.

Ron et al. say that PSAs are good for capturing the long-range stationary, statistical properties of the
source, and APFAs are better for capturing short sequence statistics. They have used APFAs to segment
cursive handwriting into characters, and PSAs to correct corrupted strings of characters, and combined the
two in a complete handwriting recognition system.

4.5.1 When the input is a single string

Another interesting aspect of [RST94] algorithm is that it can take as input a single long string of length
m. This is converted into the standard multiset by sliding an overlapping window of width ¢, to generate
m — { + 1 strings. £ is then an upper bound on the order of the Markov chain which can be learnt.

In the single string case, we can only infer ergodic models; since transient transitions are not exercised often
enough to get reliable statistics. (An ergodic model is one in which you every state can be reached from every
other with non-zero probability. The underlying directed graph must therefore be strongly connected.!®)

We now consider the problem of how long the input string must be in order to reliably learn a PSA M.
Intuitively, we must observe each state whose stationary probability is non-negligible enough times so that
we can identify the state as significant, and so that we can compute (approximately) the probability of
emitting each symbol from that state. So the string must be long enough to ensure the convergence to the
stationary distribution.

The stationary distribution ITas(-) is the unique distribution satisfying

Mar(g) = > Tar(q') Pr(gle).

16 A suffix tree for a set of strings S is the prefix tree of the set of suffixes of the strings in S (see [Gus95]). A probabilistic
suffix tree is a suffix tree with probabilities attached to each branch. This is similar to a DPFA.

17For an algorithm for learning a “normal” Markov chain in the limit with probability 1, see [Rud3s].

18n [RST94] they say that it is also necessary that the machine be aperiodic, i.e., that the greatest common divisor of the
lengths of the cycles in the underlying graph is 1.
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Let Rps be the state transition matrix, and Ry the time reversal of Ry, that is, Ras(q, ¢') is the probability
of going from ¢ to ¢, and Rps(q,¢’) is the probability of going from ¢’ to ¢. Define the multiplicative

reversibilization Ups of M by Uy def RMRNM. Denote the second largest eigenvalue of Upy by Aa(Uns). They
then allow the length of the string (and hence the running time of the algorithm) to be polynomial in £, n,
|21, %, % and 1_)\21%, where £ 1s the pre-specified maximum order of the chain, and n is the maximum
number of states (if this is unknown, we can search for an upper bound). This means that, to learn Markov
chains which only slowly converge to their stationary distribution, you need more data, and hence more time.

4.6 The Crutchfield algorithm

Crutchfield and Young [CY89] proposed an algorithm very similar to the two-pass Russian algorithm, but
which has different input and output. Namely, the input is one long string, which is divided into all the
overlapping substrings of length £, and the output is a DPFA. (Hence the canonical automaton is a not
necessarily complete tree of height £.) The algorithm constructs a DFA M in a similar way to the Russian
algorithm, the difference being that two states are deemed equivalent if all strings of length exactly k in their
tails are the same. This means that we can only perform the equivalence test on nodes down to level £ — &
(counting the root at level 0). They call process “topological reconstruction”. They then attach probabilities
to the arcs of this DFA by examining the counts on the nodes in the tree in a manner we now describe.

For each state [n;] in M, pick a representative node n; from this equivalence class and examine all its arcs
in the tree. If we are currently examining transition n; ——n; in the tree, we add the transition [n;] — [n;]
to the automaton, where ¢ = ¢(n;)/c(n;). Unfortunately this is not sound: when we are learning DFAs, it
does not matter which node we choose to “represent” state [n;], since they are all equivalent, but when are
trying to learn PFAs, the representative we choose affects the resulting probabilities. They suggest picking
as a representative the node highest up in the tree, where the counts are larger, and hence the statistics
more reliable. We will discuss alternatives later, in the section on learning NPFAs.

5 Learning NPFAs (HMMs)

5.1 Using the Baum-Welch algorithm

A popular approach to learning the topology of an HMM is to construct a fully connected graph (a clique)
on n nodes (where n is an upper bound on the number of states in the model you are trying to learn)
and then let the Baum-Welch training procedure assign zero weight to arcs which are not necessary. This
approach has two drawbacks. Firstly, n will usually be unknown. This is not a major problem, since we
can incrementally try n = 1, n = 2, ..., until the results (as determined by, say, a cross-validation test)
are deemed acceptable. (Some other methods of computing the right size of model have been proposed, but
cross-validation seems to work the best in practice [KMNR95].) The more serious problem is that a fully
connected graph on n nodes has O(n?) arcs, which is a large number of free parameters; not only are many
of these potentially redundant, but models with a large number of free parameters need more training data
to avoid overfitting.

A PAC-style analysis of an EM-like algorithm for learning a certain subclass of HMMs is given in [FR96].

5.2 Iterative state duplication
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Figure 10: An illustration of the state duplication method. On the left we illustrate how all the connections
to the state are copied to the new state. In the next two columns we illustrate how a particular state may be
connected up, what the new topology will look like after duplication, and how it may end up looking after
pruning. From Fig. 16 of [FAK94].

We now discuss an ad hoc method which uses the Baum-Welch procedure as part of its “inner loop”. In
[FAK94], the authors are interested in using HMMs for finding common patterns in proteins called motifs.
Their topology learning algorithm is as follows. They start out with a fully connected graph on n nodes.
Then they train it using Baum-Welch; prune transitions with negligible probability (to prevent the model
becoming too large); find the node (call it ¢) with the greatest number of in and out arcs (choose randomly
if there are ties); make a copy of ¢; and repeat until sufficient accuracy is obtained. The intuition is that
the most densely connected node may in fact represent two different states, so we make a duplicate copy
of it, and let subsequent training and pruning eliminate any unnecessary new arcs (see Figure 10). Since
the Baum-Welch algorithm gets stuck in local optima, they repeat the whole process from different random
starting points.

A similar approach, called the “Successive State Splitting” Algorithm, is described in [TS94] in the context
of left-right speech recognition models.

5.3 Model surgery

Another approach is to construct a topology by hand, and then “fine tune” it after it has been trained. Con-
sider, for example, the approach of “model surgery” used in HMM models of protein sequences [KBMT94]:
they start out with a “backbone” of n states, with transitions to skip over states, and transitions to side
states with self-loops, which allow the insertion of extra symbols. If, after training, it is found that the skip-
ping transitions are used very frequently, they sdelete the part of the chain which is skipped over. Similarly,
if the insert states are used very frequently, they add more states into the backbone. In this paper we are
interested in fully automatic means of inferring the correct topology. (It would be interesting to consider
the possibility of using the handcrafted topology as a prior to an automatic Bayesian method.)
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5.4 Using a Bayesian state-merging method

The most well-principled approach to learning HMMs is by Stolcke and Omohundro [SO92, SO94]. As in
many of the methods for learning PFAs, they repeatedly merge states in the prefix tree (i.e., the maximum
likelihood HMM), but they no longer recursively merge the children of two merged nodes, and hence the
resulting machine becomes non-deterministic. This means we cannot compute the similarity of two nodes
based on their subtrees, since there may be many branches below each node with the same label. Instead,
they consider all pairs of states, and then compute the posterior probability of the model in which this pair
is merged; the pair which maximises this posterior is then picked as the pair to be actually merged. (Hence
this is a greedy or best-first algorithm, which can get stuck in local optima.) They continue to merge until
the posterior stops increasing. (A large part of their lucid paper is concerned with how to compute these
probabilities efficiently, which we will not go into here.) They show experimently that their algorithm out-
performs the approach of learning the weights on a fully-connected graph using the standard Baum-Welch
algorithm. They have also incorporated it into a speech recognition system, although, as noted above, an
APFA performs as well on this same dataset and can be learnt much more quickly.

As mentioned above, they compute a prior probability for the model structure which produces a bias towards
simpler models. They also use a prior for the transition and emission probabilities, which is a good way to
deal with small training sets. Since these probability distributions are multinomials, they use a Dirichlet
prior, which 1s the conjugate prior for a multinomial. This has the effect of adding “virtual samples” to
the data set, which is similar to the somewhat more ad hoc approach to data smoothing of simply adding
a constant to all the empirical counts, of which we saw an example above. (Similar approaches are used in
other applications of HMMs, e.g., [BHK193].)

5.5 A new algorithm for learning NPFAs

Intuitively, 1t seems that it ought to be possible to extend the idea of merging states whose signatures
(subtrees) are similar to the case of learning non-deterministic PFAs. We decided to do this by using the
two-pass approach used in the Russian and Crutchfield algorithms, where we first identify states that are
similar, and then merge them.

We say that two states ¢, ¢’ are similar if their k-tails are §-similar, which means they contain the same set of
strings, and for each string # in the tails, | Pr(z|¢) — Pr(x|¢’)| < 4. (This is similar to p-indistinguishability,
except that we are restricting attention to the strings in the subtrees.) Of course, as we go down the tree,
the counts get smaller, and hence the statistics less reliable. We must therefore either ignore nodes which
have too low a count (as in the APFA algorithm), or have a sample-size sensitive measure of similarity (as
in the Spanish algorithm). This problem is especially acute since we do all the similarity computations
before merging any nodes (which increases the counts). The most important difference of this definition
from previous ones is that we do not require the children of two similar nodes to be similar. Hence, ¢ and ¢’
may be deemed similar, yet ¢ transitions to state r on letter @ and ¢’ transitions to state s # r on letter a.
The resulting machine may therefore be non-deterministic. (In the APFA algorithm, they do not explicitely
require that the children of two similar nodes be similar, but they recursively merge the children of two
similar nodes, thus removing any non-determinism.)

d-similarity is not an equivalence relation; rather, it produces clusters of similar points, which correspond to
the same state. We need to be able to perform two operations on our clusters (states): in the first pass, decide
if a node in the tree belongs in a cluster (i.e., if it is similar enough to the other nodes in that cluster), and
in the second pass, find all the arcs leaving this state. The membership operation is essentially comparing a
node with a moving target, since the number of nodes in a cluster is continually growing as we walk down
the tree. The arc operation is also tricky: When computing the arcs from a state, should we consider all
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the nodes in that cluster, and if so, how do we combine their counts? We are currently investigating these

issues.
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