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Abstract

We provide a survey of methods for inferring the structure of a �nite automaton from passive obser�
vation of its behavior� We consider both deterministic automata and probabilistic automata �similar to
Hidden Markov Models�� While it is computationally intractible to solve the general problem exactly�
we will consider heuristic algorithms� and also special cases which are tractible� Most of the algorithms
we consider are based on the idea of building a tree which encodes all of the examples we have seen� and
then merging equivalent nodes to produce a �near� minimal automaton�
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APFA Acyclic deterministic Probabilistic Finite Automaton� A DPFA in which the underlying topology is
acyclic�

DFA Deterministic Finite Automaton�

DPFA Determinisitic Probabilistic Finite Automaton� This is a DFA in which states emit symbols proba	
bilistically� but the next state is uniquely determined by the current state and the symbol�

FSM Finite State Machine� This is a DFA which converts input strings to output strings� Also called a
transducer� There are two main kinds� a Moore machine associates a �deterministic� emission function
with each state� and a Mealy machine associates a �deterministic� emission function with each arc�

HMM Hidden Markov Model� This is a special case of an NPFA in which the transition probabilities
are independent of the symbol which is emitted� hence an HMM is a Markov Chain in which states
emit symbols probabilistically� We usually specify the emission and transition probability distributions
separately�

NFA Non	deterministic Finite Automaton� Like a DFA� except that there may be several possible next
states given the current state and symbol�

NPFA Non	deterministic Probabilistic Finite Automaton� This is an NFA in which states emit symbols
probabilistically� and the next state is chosen probabilistically �conditioned on the symbol�� We usually
specify the probability of emitting a symbol and transitioning to the next state jointly�

PFA Probabilistic Finite Automaton�

PSA Probabilistic Su�x Automaton� This is a special case of a DPFA in which each state label is a string
of at most length L� It can be used to model a Markov Chain in which some states have order L� and
other states have lower order�

Table �� A list of the acronyms used in this paper�

� Introduction

In their excellent survey paper� Angluin and Smith �AS��� de�ne �inductive inference� as the �process of
hypothesizing a general rule from examples�� We are interested in the special case where the �rule� takes the
form of a Deterministic or Probabilistic Finite Automaton �DFA or PFA�� and the examples are �assumed
to be� drawn from a �stochastic� regular language� �See Table � for a list of the acronyms used in this paper�
the di�erent models that we use will be de�ned more fully later�� We can think of this as the problem of
trying to learn the structure inside of some �black box�� which is continously emitting symbols�� Thus no
experimentation or oracle queries are allowed� We concentrate on recent results which are not mentioned in
the ���� survey on inductive inference by Angluin and Smith and the ���
 survey on grammatical inference
by Miclet �Mic�
�� �See also the book by Fu �Fu�����

��� Applications of automaton inference

Most of the work on automaton inference �especially the early work� is theoretical in nature� �nite automata
are simple� so we can characterize more easily how hard it is to learn them� both in terms of how large the

�We will consider two cases� one in which the target automaton �the one we are trying to learn� returns to its start state
after it emits each string� and �in the case of PFAs only� one in which it runs continuously �i�e�� there is no �nal state�� We
also assume that it is minimal� i�e�� has no redundant states�
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training set must be� and how much time is needed � that is� the sample and time complexity�

However� �nite automaton inference also has several �real world� applications� In the electrical engineering
community� there is considerable interest in synthesising Finite State Machines �FSMs are DFAs with output�
from a partial speci�cation of their behavior� see for example �OE��� and the references therein� DFAs have
also been proposed as a model of players �in a game	theoretic sense� with bounded rationality� learning to
play optimally against such players is very similar to the inference problem de�ned above� see for example
�FKM���� and references therein� Finally� we can imagine the problem of a robot trying to learn the structure
of its environment� which can be modelled as a DFA� see �RS�
� RS��� MB����

The applications of PFAs� of which Hidden Markov Models �HMMs� are a special case� are much more
extensive� HMMs have been very widely used in the speech and handwriting recognition communities �see
e�g�� �Rab��� RST����� and have also recently been applied to recognizing patterns in biological sequences
such as DNA and proteins �see e�g�� �KMH��� KBM���� BCHM����� Most work on HMMs assumes the
sructure or topology is speci�ed in advance� and the learning procedure �which is usually called training in
this context� merely consists of �nding the right transition probabilities� �A similar comment can be made
about neural networks��� We are interested in the more general problem of learning the topology of the
model� as well as the transition probabilities� starting from scratch� �The even more general problem of
choosing a model class is discussed in �Cru����� The hope is that PFAs can then be applied to domains
where we have little or no prior knowledge as to what the correct structure should look like� As an example
of this� Crutch�eld and Young �CY��� You��� propose learning a PFA from a series of measurements taken
from a non	linear dynamical system� and using the �complexity� of the resulting PFA as a measure of the
complexity of the original system� �See also �Li�
���

��� Why PFAs instead of other probabilistic models�

We could consider the problem of learning probabilistic models which are more powerful than PFAs� such
as belief �Bayesian� networks �Pea��� HGC��� or stochastic Context Free Grammars �JLM���� but learning
PFAs will prove to be hard enough� In fact� the problem is so hard �i�e�� time	consuming� that we will mostly
concentrate on a special case� which we call �deterministic� PFAs �DPFAs�� These are less powerful than
HMMs� and hence easier to learn� In fact� experimental results in �RST��� show that it is �
��

 times
faster to learn a pronunciation model for spoken words using a �certain kind of� DPFA than it is to learn a
corresponding HMM� and yet the performance of the DPFA is actually slightly better� Also� it is possibly to
come up with provably e�cient algorithms to optimally learn this kind of DPFA� whereas optimally learning
HMMs is provably hard � the algorithms used in practice only �nd a local optimum�

Another kind of DPFA� called a Probabilistic Su�x Automaton �PSA�� can be viewed as a Markov chain in
which each state has order at most n� This is much smaller than an explicit Markov chain in which every
state has order exactly n� such a model has O�j�jn� states �where � is the alphabet�� and hence requires an
exponential amount of data to learn the transition probabilities� �A Markov chain of order n is also called
an n	gram model�� Experimental results in �RST��� show it is possible to learn a DPFA that performs well
on a task which involves correcting errors in text� but it is not yet clear if this method is better than other
sparse n	gram methods such as hash tables� Also� the results of this model applied to a task which involved
locating genes in E� coli DNA were inferior to the results of an HMM with a hand	crafted topology �see
�KMH����� although this may be because of the postprocessing they perform to cope with overlapping genes�

�See �HKP��	 for a good book on neural nets�
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��� The input to�output from the algorithms

The input to the algorithms will usually be a set or multi	set of �nite	length strings� Some of the algorithms
accept a single string of length m �assumed to be generated by a PFA with no �nal state�� but they convert
this to a multiset of m� ��� strings by sliding a window of length � across it� If the strings are unlabelled�
we assume they are positive examples of the target �stochastic� regular language we are trying to learn�
Unfortunately� in the deterministic case� it is not possible to learn a language from positive data alone
�Gol
��� so often the strings will be labelled as either in the language �positive examples� or not in the
language �negative examples�� When trying to learn FSMs� rather than just presenting strings with their �
or 	 labels� we give the corresponding output strings they should produce� this is sometimes called a �partial�
behavioral speci�cation�

In much of the literature� the goal has been to learn the right rule �i�e�� the rule believed to be generating
the examples� in the limit of in�nite data� This notion is called identi�cation in the limit� and was invented
by Gold �Gol
��� In the case of DFAs� the �right rule� means that the inferred model should be as small
as possible� and contain all the strings in the set of positive examples and none of the strings in the set of
negative examples� If no negative examples are provided� the inferred language should contain as few strings
as possible which are not in the positive example set�

In the case of PFAs� our goal might be to learn the target probability distribution with probability � in the
limit of in�nite data� However� in practice we only have a �nite amount of data� so a more useful goal would
be to approximate the target distribution to within some precision given only a �nite training sample� We
will de�ne this more precisely later�

��� Batch vs� online algorithms

An online algorithm receives a new input string xt �along with its label� at every time step t� and returns
its best guess Ht so far about what the target automaton is� Ht should be computed only from Ht�� and
xt� Usually we impose the additional constraint that the size of Ht be a sublinear function of t� so that an
algorithm which remembers all the strings so far� and each time constructs a new model �from scratch�� is
not considered on	line�

A batch algorithm� in contrast� waits until it has received the complete input set I� and then produces its
best guess� Many batch algorithms can be converted to on	line algorithms by alternating between �growing�
and �shrinking� phases� in the growth stage� new strings are added to the current model� and whenever it
becomes too big� the state merging algorithm is invoked �see �RST��� SO��� for examples��

��� Bottom�up vs� top�down algorithms

Most of the batch algorithmswe study work in roughly the same way� namely� construct some canonical� tree	
shaped automaton which represents the input set �see Figure � for an example�� and then merge equivalent
states to get a smaller model� �We will explain the details later�� We call this a �bottom	up� approach� A
�top	down� approach consists of starting with a �	state model� and then trying to ��t� new strings to the
model� and splitting it apart into new states� transitions whenever necessary�

There is no consensus on which method is better� In the case of learning FSMs from an incomplete sample�
we will study a top	down algorithm which runs in time exponential in n �the number of states in the �nal�
minimal machine�� and a bottom	up algorithm which runs in time exponential in t �the number of nodes in
the tree�� Experimental results �OE��� verify that the top	down approach is faster in practice� However� the
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exponential in t behavior arises because ��� the input is incomplete� and ��� we insist on an exact answer�
Removing either of these conditions will yield a much faster �polynomial time� solution� as we will see�

Ron� Singer and Tishby �RST��� present a top	down algorithm for learning a PSA �a Probabilistic Su�x
Automaton� which can be thought of as a variable	order Markov chain�� They claim that their top	down
scheme is equivalent to a bottom	up scheme� but that the top	down scheme is �somewhat more intuitive�
simpler to implement� �and� more easily adapted to an online setting�� However� Stolcke and Omohundro
�SO��� say that� �our experience has been that modelling approaches based on splitting tend to �t the
structure of a domain less well than those based on merging�� Intuitively the reason for this is that top	
down approaches have seen less of the data� and have to make decisions too early� whereas bottom	up
approaches have more and more data to work with as states get merged��

The most general approach would be to think of the problem as searching through model space� and allow
both the splitting and merging operators� As far as we know� no one has tried this�

� Finite automata de�ned

The model classes we shall consider are deterministic �nite automata �DFAs� and probabilistic �nite au	
tomata �PFAs�� We shall de�ne these more precisely� and then show how PFAs relate to Markov Chains and
Hidden Markov Models �HMMs�� DFAs are discussed more fully in �AU
�� HU
�� and PFAs in �Paz
��� for
a good tutorial article on HMMs� see �Rab����

��� Deterministic Finite Automata

De�nition � A Deterministic Finite Automaton �DFA� is a tuple M � ��� Q� q�� F� ��� where � is the
input alphabet� Q is the set of states� q� is the initial or start state� F � Q is the set of �nal states� and
� � ��Q � Q is the transition function� A Non	deterministic Finite Automaton �NFA� is the same as a
DFA except that � � ��Q�Q is now a relation� intuitively� for each state q and input letter a� there may
be several states that can be reached on the next step �hence the next state is not fully determined��

The above de�nition of a DFA�NFA views it as an acceptor of strings� A string x � x�x� � � � xm is said to
be accepted by a DFA�NFA if there is at least one path edge	labelled by x which starts in the initial state
and ends in a �nal state� �This de�nition covers the case of an NFA in which we may not know which edge
to follow � conceptually� we are allowed to try them all� as long as at least one of them leads to a �nal
state�� The set of strings accepted by a DFA�NFA M is called the language accepted by M � and is denoted
L�M �� Any language accepted by a DFA�NFA is called regular� Equivalently� we can view DFAs�NFAs as
generating a language� by performing all possible walks from the intial state to a �nal state� we then de�ne
L�M � as the set of strings generated by M �

A �nal state can be viewed as emitting the �accept� symbol� and a non	�nal state as emitting a �reject�
symbol� A natural generalization of this is to allow states to emit arbitrary symbols� This is called a Moore
machine� Now� whenever we perform a walk to accept an input string x� we emit a series of symbols at each
state we encounter to form an output string y� Thus the resulting machine acts as a transducer� transforming
input strings into output strings� Alternatively� we can think of associating output symbols with each arc
instead of each state� this is called a Mealy machine� Moore and Mealy machines are interconvertible�
Transducers are also called Finite State Machines �FSMs��

�In a personal communication ���
��
���� Dana Ron pointed out that their top�down algorithm actually looks at the whole
tree constructed so far� and thus has roughly the same amount of information available to it as a bottom�up algorithm�






��� Probabilistic Finite Automata

Unfortunately� there is is a lot of confusion about what exactly is meant by a PFA� Basically a PFA is a way
of specifying a probability distribution over strings in a regular language�

It is important not to confuse probabilism with non	determinism� A non	deterministic machine is one
in which the next state is not fully determined by the current state and the current input character� A
probabilistic machine is one which has probabilities associated with it�� There are at least two natural ways
of associating probabilities with a �nite automaton� One is to take a DFA and associate a probabilistic
emission function with each state� thus ��q� a� is the probability that state q emits symbol a� We call this a
Deterministic Probabilistic Finite Automaton �DPFA�� since� once the symbol is emitted� the next state is
fully determined �hence we can equivalently think of the symbols as being attached to the arcs��

The second way to associate probabilities with a �nite automaton is to attach probabilities to the arcs of an
NFA� We shall call such machines Non�deterministic Probabilistic Finite Automaton �NPFA�� since there is
a choice of next states� even once we have seen the symbol� The transition relation � is replaced by a series
of j�j transition matrices T ���� each of size n � n� where n is the number of states� There are two possible
interpretations of T �a��i� j�� it could denote the joint probability of going from state i to state j and emitting
symbol a� which we shall call an output	NPFA� or it could denote the probability of going from state i to
state j given that the input symbol was a� which we shall call an input	NPFA� The former model is the one
which is most similar to Hidden Markov Models� and is the one we will concentrate on� The latter model�
however� is the original de�nition� and stems from the tradition of viewing automata as acceptors of strings�
In the next subsection� we shall show that output	NPFAs are more �general� than input	NPFAs �although
input	NPFAs can be generalized to probabilistic transducers in a way which output	NPFAs cannot��

�
�
� Input�NPFAs vs
 output�NPFAs

In an input	NPFA� we de�ne T �a��i� j� � Pr�qjjqi� a�� Hence the transition matrices T �a� are stochastic
matrices� which means each row must sum to ��

P
j T �a��i� j� � � for all i� a pairs� Hence the number of

degrees of freedom is �n � �� � n � j�j� In an output	NPFA� the probabilities are joint probabilities over
transitions and emissions� that is� we de�ne T �a��i� j� � Pr�a� qjjqi�� We require that

P
j

P
a T �a��i� j� � �

for all i� Hence the number of degrees of freedom is n�nj�j���� Thus we see that an output	NPFA has more
degrees of freedom than an input	NPFA� for example� for a binary alphabet� an output	NPFA has �n� � n
degrees of freedom� whereas an input	NPFA has only �n�� �n� This is one sense in which an output	NPFA
is more general than an input	NPFA�

We can convert an input	NPFA into an output	NPFA if we specify the distribution Pr�ajq�� i�e�� the proba	
bility of generating a string� This is an extra n�j�j � �� degrees of freedom� �This distribution is implicit in
the output	NPFA� since Pr�ajq� �Pq� Pr�a� q

�jq��� This is another sense in which an output	NPFA is more
general than an input	NPFA�

Finally� in the next subsection we will see that output	NPFAs can be used both to generate random strings�
and to evaluate the probability that a random string was generated by a given output	NPFA� whereas input	
NPFAs can only be used to evaluate the probability of a string generated by some other process� This is
the �nal sense in which output	NPFAs are more general� Since we are interested in passively learning the
structure of an automaton which �spontaneously� generates strings� from now on we will shall only consider
the case of output	NPFAs� and drop the pre�x �output��

�However� in view of the fact that DFAs and NFAs are equivalent in power �i�e�� accept the same set of languages�� we often
use the phrase 
deterministic �nite automaton� to mean 
non�probabilistic �nite automaton�� which covers both DFAs and
NFAs�

�



The original de�nition of a PFA� due to Rabin �Rab���� was in fact as an input	NPFA� and stems from
the tradition of viewing automata as acceptors of strings� In Rabin�s formulation� a string is said to be
accepted if the probability of its being accepted exceeds some threshold � � �
� ��� By using the fact that the
number of possible values for � is uncountable� he showed that the class of languages accepted by PFAs is
strictly greater than the class of languages accepted by DFAs� if� however� � is restricted to being a rational
number� PFAs are no more powerful than DFAs� Furthermore� any PFA which has an isolated cut�point can
be converted to a DFA� A cut	point � is called isolated with respect to a PFA if there exists a � � 
 such
that jPr�x�� �j � � for all x � ��� The intuition is that� by performing repeated trials to reduce the error�
we can be sure that the string is de�nitely accepted or rejected� since all probabilities are bounded away
from �� and hence we can convert the PFA to a DFA�

�
�
� Generators vs
 evaluators

As shown in �KMR����� when talking about a discrete probability distribution� it is important to distinguish
between generators and evaluators� An evaluator for a probability distribution D �over �xed length strings�
say �n� takes as input a string x and returns its probability under D� A generator takes as input a string
of random bits� and outputs a string that is distributed according to D� They show that some kinds of
distributions have e�cient �polynomial sized� generators but no e�cient evaluators�

It is clear that a DPFA and an output	NPFA can be used to generate a string of length m in O�m� time�
for a DPFA� if we are in state q� choose an emission symbol a according to ��q� a� and move to the state
determined by ��q� a�� for an NPFA� if we are in state q� choose an arc leading out of q� emit the symbol
on that arc�s label and move to the next state� To generate strings in some stochastic regular language� we
perform the above walk starting in the initial state until we end up in a �nal state �which might emit a
special �nal symbol�� To generate strings of length m� we just do a walk of m steps �optionally followed by
a transition to the �nal state�� To generate in�nite length strings� we perform a continuous walk� It is not
clear how to use an input	NPFA as a generator� however�

We now show how to use these models as evaluators� The basic idea is to consider all paths edge	labelled by
x � x�x� � � �xm� and for each path� compute the product of the probabilities on each edge� If the underlying
graph is deterministic� there will only be one path� so this is easy� we can evaluate the probability of a string
of length m O�m� time� If the underlying graph is non	deterministic� things are a bit more complicated�
because there may be many paths labelled by x� Nevertheless� we can do this e�ciently� as we now explain�

The �rst method uses matrix multiplication� The probability of all paths from i to j which are labelled by
x is given by T �x��i� j�� where T �x� � T �x��T �x�� � � �T �xm�� This takes O�mn�� time to compute� We can
stipulate that the path must start in the initial state �with index 
� say� and end in a �nal state �with indices
in the set F �� and set Pr�x� �

P
f�F T �x��
� f �� Alternatively� we could allow any state to be the initial state

with some probability ��i�� and not have any distinguished �nal states� and set Pr�x� �
P

i�j ��i�T �x��i� j��

Another way of writing the formula is as follows�

Pr�x� �
X

q��q��q������qm

��
� Pr�q�jq�� x�� Pr�q�jq�� x�� � � �Pr�qmjqm��� xm��

A naive implementation of this would take O�mnm� time� since there are nm possible paths of length m�
and m multiplications to perform at each step� However� we can use the following dynamic programming
algorithm� called the forward	backward algorithm �Rab���� to compute it in O�mn�� time� We de�ne �t�i�

as the probability of a walk from the start state to state i labelled by x� � � �xt� �t�i�
def
� Pr�x� � � � xt� qt � i��

We can compute this inductively as follows� For the base case� we set ���i� � ��i�� and for the induction
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step�

�t�j� �
X
i

�t���i� Pr�qi
xt��qj��

Then we set Pr�x� �
P

i �m�i��

The forward	backward algorithm can be used to evaluate the probability that an output	NPFA generated
a string� If we imagine a process uniformly generating strings and sending them to an input	NPFA� then
we can use the forward	backward algorithm to evaluate the probability which the automaton induces on its
inputs�

��� Hidden Markov Models and Markov Chains

There are two de�nitions of a Hidden Markov Model �HMM�� The most common one is when each state has a
probability distribution Pr�ajq� over symbols which are emitted �hence the states are �hidden��� and another
�independent� distribution Pr�q�jq� over transitions �hence the underlying topology is a Markov chain��
This is clearly the same as an NPFA in which the transition and emission probabilities are conditionally
independent� since Pr�a� q�jq� � Pr�ajq� �Pr�q�jq��
The other� less common de�nition of an HMM associates probabilities with the arcs� that is� it speci�es the
joint distribution Pr�a� q�jq�� This is exactly the same as our de�nition of an NPFA� The advantage of this
formulation �besides removing the independence assumption� is that one can have silent arcs� that is� arcs
that emit 	� the empty symbol� This can be useful for �skipping over� parts of a model� or for �looping
back�� see �Rab��� for some examples in the context of speech recognition�

To see that HMMs cannot be converted into a DPFA� note that the transition probabilities are independent
of the symbol� and hence the next state is not fully determined by the current state and the current input�
alternatively� we can think of each transition being labelled by 	� but since there may be several such arcs�
this results in non	determinism�

We now consider a subclass of DPFAs� called Probabilistic Su�x Automata �PSAs�� and show how they can
be used to succinctly model variable order Markov chains �RST��� RST���� In a PSA� every state is labelled
by a �nite length string in ��� If every label is at most length L� we call it an L	PSA� The label encodes how
much �history� we pay attention to� �To ensure this condition� we require that� if there is an arc p

a��q�
then the label of q should be a su�x of s �a� where s is the label of p� and s �a denotes string concatenation��
If the set of states is �labelled by� all of �L� we have an order L Markov chain� since the next state transition
probability depends on the last L symbols� However� if some states need a shorter memory length than L�
a PSA is a much more compact representation than a Markov Chain� and hence easier to learn�

��� Fuzzy automata

We just mention in passing that using probabilities is not the only way to extend DFAs� Another method
uses fuzzy logic � see �Mic�
� for a few references�
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� Learning DFAs

��� De	nition of success

Our goal will be to �nd the smallest automaton which is compatible with the input� In the limit of in�nite
data� this will be equivalent to the target concept we are trying to learn�

Since this is a di�cult goal to achieve� often we will �nd it acceptable if� with high probability� we can learn
a model which is approximately equal to the target concept� This notion� called PAC	learning �Probably
Approximately Correct�� is due to Valiant� and is discussed further in �Ang��� KV���� The formal de�nition
is given below�

De�nition � Let X be the problem instance space� C be a concept class over X �i�e�� a set of subsets of
X�� and H be a hypothesis class over X �i�e�� a set of representations for �at least� every function in C��
�Example� X is ��� C is the set of regular languages� and H is the set of DFAs�� We say that C is PAC
learnable using H if there exists an algorithm L with the following property� for every target concept c � C� for
every distribution D on X� and for all error parameters 
 
 � 
 ��� and con�dence parameters 
 
 � 
 ����
if L is given random examples of c drawn according to D� then with probability at least � � �� L outputs a
hypothesis concept h � H such that � � error�h� � Prx�D�c�x� �� h�x��� If L runs in time polynomial in
���� ���� n �the dimensionality of the instance space�� and size�c� �the size of the concept under some �xed
representation scheme�� we say that C is e�ciently PAC learnable�

��� Complexity results

A complete presentation of a language L is an ordered sequence of all the strings in �� labelled as either
positive �being in L� or negative �not in L�� A positive presentation just consists of all the strings in L� We
assume L could be an in�nite set� Gold �Gol
�� showed that it is not possible to exactly identify L� even
in the limit of in�nite data� given only a positive presentation� This seems to be a paradox in view of the
fact that humans seem to learn languages from only positive examples� However� we will see later that it is
possible to identify in the limit with probability � a stochastic regular language from only positive examples�

In practice one only ever sees a �nite sample� A uniform complete sample is the set of all labelled strings
of length at most m� We will see later that there is a simple algorithm� which runs in time polynomial in
the number of nodes in the input tree� and which can learn the minimal FSM �i�e�� the one with the least
number of states� consistent with such an input set� If the sample isn�t uniform complete� and is missing
even an arbitrarily small �xed fraction 
 
 � 
 � �i�e�� the input contains only �j�nj�� strings� then Angluin
�Ang
�� showed that the problem is NP	hard� Obviously� therefore� the case of learning the smallest DFA
consistent with an arbitrary set of positive and negative examples is also NP	hard �Gol
�� Ang
��� Even
learning near	minimal DFAs� or PAC	learning DFAs� is hard� Pitt showed that learning a near	minimal DFA
�i�e�� one with nk states� where n is the minimal number of states� for some �xed k� is NP	hard �PW����
and Kearns and Valiant �KV��� showed that PAC	learning a DFA with any reasonable hypothesis class is as
hard as breaking various cryptographic protocols which are based on factoring�

However� these are only worst case results� and on average� we will see that we can do quite well� even with
sparse input sets�
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Figure �� The best hypotheses produced by the Porat and Feldman iterative algorithm as a function of
sample size� The language is the �even a�s� language �i�e�� the input set is �	��a��b��aa��ab� � � ��� and
the rightmost DFA is the correct minimal automaton� Dotted lines denote mutable links �which may be
subsequently deleted�� solid lines denote permanent links� l denotes 	� the empty string� 
 is an accept state�
� is a reject state�

��� Top�down algorithms

�
�
� Exactly learning DFAs using an ordered complete presentation

Porat and Feldman �PF��� give an online algorithm for incrementally learning DFAs� i�e�� at each step� they
output a DFA which is the best guess so far �in the sense of being the smallest model consistent with the
data seen so far�� based only on the previous guess and the current input string� Hence the storage space
required is polynomial in n� the number of states in the minimal automaton� �By contrast� batch algorithms
store all the examples strings� and hence could take space exponential in the length of the longest string if
they are given a complete presentation�� The algorithm introduces a new state� complete with all possible
arcs to and from it� if the current example cannot be �t to the model� and arcs are pruned by subsequent
counterexamples� A worked example is shown in Figure �� The algorithm takes O�n�� time and space�

Porat and Feldman require that the input be a complete� lexicographically ordered presentation of the
language �i�e�� 	� a� b� aa� ab� � � � � where each string is marked as either � or 	� and we have assumed
� � fa� bg�� since they prove that no algorithm which uses a �xed amount of working storage �in addition
to the space required to store the current guess and example� can learn a DFA from an arbitrarily ordered
presentation� The inspiration for this was the fact that connectionist �neural network� systems use only
�nite working space� Indeed� they show that they can implement their algorithm in a neural network� �We
will brie y discuss other neural network methods later��

�
�
� Exactly learning FSMs from an incomplete speci�cation

Oliveira and Edwards �OE��� deal with the more general case of when the input consists of an arbitrary
set of consistent input�output pairs� This case arises in practice when synthesising FSMs from a partial
behavioral speci�cation� The speci�cation can be given in the form of an incomplete labelled pre�x tree �see
Figure � for an example�� �Hence this algorithm is a batch algorithm�� However� rather than adopting the
bottom	up approach of trying to merge states in this tree� which takes time exponential in t �the number of
nodes in the tree��� they adopt a top	down approach of walking over the speci�cation tree� and growing the
current model whenever they encounter some transition which cannot be �t into the current model� This
runs in time which is exponential in n� the number of states in the �nal minimal automaton� �This algorithm
is similar to the one by Biermann et al� �BK
����

�Exponential time may be necessary because we may need to consider all possible subsets of nodes� to �nd which ones should
be merged� �P���	 proved the general problem of minimizing an FSM from a partial speci�cation is NP�complete�
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In more detail� the algorithm works as follows� It tries to build a deterministic Moore or Mealy machine
with no more than n states which is compatible with the input seen so far� If no machine is found� one more
state is allowed� and we continue the search� �A lower bound on the number of states can be determined by
computing the size of the largest clique in the incompatibility graph� in which the vertices are the nodes in
the behavior speci�cation� and the edges join nodes which cannot be merged because they have incompatible
behavior� Unforunately� max	clique is an NP	complete problem� so this may take exponential time��

Suppose we already have a partially constructed machine M and we are in state q� We then try to �t the

next labelled transition q
x�y��q� from the pre�x tree into M � �q

x�y��q� denotes an arc from q to q� which
converts the input string x into the output string y�� There are two possibilities�

� There is no such transition currently in M � The algorithm considers all possible ways of adding such
a transition� that is� all possible destination states� It makes a choice� and then recursively tries to
satisfy the rest of the speci�cation� If this works� the choice was correct and the algorithm terminates
successfully� Otherwise� it backtracks and considers the next untried destination� It also considers the
possibility that the destination might be a new state�

� There already is a corresponding transition q
x�y���q�� If the outputs agree �y � y��� we can use this

transition� otherwise a previous decision must have been incorrect� so we backtrack�

They also give an implicit version of their algorithm� which considers all possible mappings from nodes in the
pre�x tree to states� and ��lters out� those that are inconsistent with the data� They use a package called
the Multi	valued Decision Diagram �MDD� method to implicitly manipulate the boolean functions which

enforce the output compatibility constraint �the fact that� if there are two arcs q
x�y��q� and q

x�z��q�� then
y must equal z� and the transition compatibility constraint �the fact that the automaton is deterministic��
They show that the performance of this algorithm is comparable to their explicit enumeration method�

�
�
� Enumerating all compatible automata of a given size

Gaines �Gai
�� presents an algorithmwhich produces an exhaustive enumeration of all the n	state Moore ma	
chines which are compatible with the input� If n is too small� the Moore machine may be non	deterministic�
Each string is then �sent through� the machine� and the number of times each arc is transitioned is counted�
In this way� the transition probabilities can be estimated so as to minimize some error measure� Hence the
machine can also be probabilistic�

The algorithm returns what Gaines calls an admissible subspace of solutions� ordered by the two partial
orders of simplicity �namely number of states� and goodness	of	�t� It is then up to the user to make the
appropriate tradeo�� �We will study the Bayesian approach to this later��

One interesting aspect of his algorithm is that it takes a single string as input� However� the algorithmmight
be told that it contains special delimiter �end of string� symbols �and thus represents a set of examples��
and�or that� say� every odd symbol is an input and every even symbol an output� Naturally the algorithm
runs faster with this �side information�� but in principle it can infer it� by noticing� for example� that every
time a certain symbol is read� there is a transition back to the initial state �hence that symbol represents
the end of a string�� or that every odd symbol is completely unpredictable �because it represents a random
input�� but that every even symbol is predictable given its predecessor�

��� Bottom�up algorithms
 minimizing canonical automata
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Figure �� Canonical automata for the set of positive examples fbcbca� aaabca� aabcbca� aaag� All states are
rejecting except for the leaves� and� in the case of the rightmost automaton� the internal states labelled as ��
If we want to represent an FSM� each arc can be labelled by an input�output pair� this is sometimes called a
behavioral speci�cation� Left� the maximal canonical automaton �which is non	deterministic�� Middle� the
pre�x tree canonical automaton� �A pre�x tree is also called a trie �AHU����� Right� the DAG �Directed
Acyclic Graph� canonical automaton�
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We can always construct a canonical automatonM compatible with any given �nite input set I� as illustrated
in Figure �� �An automatonM is called canonical if L�M � � I�� What we would like is to �nd the smallest
automaton compatible with the input set� This can be achieved by minimizing the canonical automaton� by
merging equivalent states �nodes in the graph��

There is a simple algorithm for minimizing a given DFA with n states in O�n�� time and a slightly more
complex one which runs in O�n logn� time �AU
�� Hop
��� This algorithm uses an equivalence relation to
partition the states into equivalence classes� The relation is q 	 q� i� T �q� � T �q��� where T �q� � fx �
��q� x� � Fg is the tail of q� that is� the set of strings accepted from state q� We will explain this method
later�

If the input set consists only of positive examples� then any automaton M � derived from the canonical
automaton M by merging states will be compatible with the input set� since L�M �� 
 L�M � � I� For
example� we could merge all the states and return the one	state automaton with L�M �� � ��� There are
many di�erent algorithms for this problem because they each embody a di�erent tradeo� between model
size and over	generalisation �as measured� for example� by jL�M ��� L�M �j�� When learning PFAs� we only
deal with positive examples� but in that case� we are interested in learning a probability distribution� and
there are well	de�ned notions of how good our answer is�

Unfortunately� when the input consists of labelled examples� we cannot apply these standard minimization
algorithms� since the input is no longer a DFA� rather� it is an incomplete speci�cation of the behavior of a
DFA or FSM� It is incomplete because some arcs are missing� In the case of an FSM� we do not know what
output they should produce� and in the case of a DFA� we do not know whether the nodes they lead to should
be accepting or rejecting� Intuitively we must consider all combinations of ways of labelling these �don�t
know� nodes� which leads to exponential time behavior� Indeed� minimizing an incompletely speci�ed FSM is
NP	complete �P 
��� Nevertheless� it is an important problem in the synthesis of sequential logic circuits� so
fast heuristic algorithms have been developed� There are basically two kinds� based on an explicit �HRSJ���
or implicit �KVBSV��� enumeration of the compatibles� �A compatible is a set of states equivalent in the
sense that they can be merged without a�ecting the behavior of the machine� The number of compatibles
may be exponential in the number of states�� In practice� however� it seems that top	down strategies work
better than minimization strategies� at least for synthesising FSMs designed by human engineers� which may
be highly structured �OE����

A special case is if we know that the machine which generated the data has only n states� and we are given
a uniform complete sample which contains all strings of length at most �n � � and their labels� then it is
possible to reconstruct the original machine� as we will see next� �Of course� the set of all strings of length
at most �n� � is exponentially large!�

�
�
� Learning FSMs from a uniform complete sample� the Russian algorithm

We now describe an algorithm due to Trakhtenbrot and Barzdin� �TB
�� which forms the basis of much of our
subsequent discussion� We will call this the �Russian algorithm� for convenience� The input is a complete
labelled pre�x tree of height �n � �� The algorithm has two phases� In the �rst� it makes a pass over the
tree in breadth	�rst �lexicographic� order to determine the states Q� that is� it computes a mapping from
nodes in the tree to states in the machine� In the second� it �nds the node corresponding to each state and
adds the out	going transitions from this state� The states are the equivalence classes induced by 	� which
will be de�ned shortly� Let �ni� denote the equivalence class containing node ni� For each state �equivalence
class� �ni�� we need to de�ne one unique representative node� this can be any node in that class� but for
concreteness� we will take the �rst node added to that class� and denote it ni�

Input� a complete� labelled pre�x tree T of height �n� �
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�
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The nodes with a black circle inside them are the states in the �nal minimal machine� All the other nodes
are labelled with the states they are indistinguishable from� because they have the same subtrees �where
de�ned�� A and B are used to identify nodes discussed in the text� From Figure �� of �TB
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Figure �� The minimal FSM realizing the tree in Figure �� Taken from Figure �� of �TB
��� The initial state
is q��

Output� the smallest FSM M consistent with T
Algorithm�
Q �� �
for each node ni in T in breadth	�rst order

if ��nj� � Q s�t� nj 	 ni
then add ni to �nj�
else Q �� Q 
�ni� �" make a new state "�

for each �ni� � Q

for each edge ni
a��nj in T

add the transition �ni�
a���nj� to M

Two nodes ni� nj are equivalent �denoted ni 	 nj� if their tails� where de�ned� are equivalent� the tail of a
node is just the labelled subtree below it� A node q speci�es the behavior of the machine starting in state
q for the strings which appear in its tail� For example� node A speci�es that ���� should be transformed
to 
�
�� which we denote A������ � 
�
�� Nodes A and B are equivalent because they specify the same
behavior for the strings on which they are both de�ned� e�g�� B���� � 
� and A���� � 
�� In this case� there
are �ve distinct states� and the resulting minimal machine is shown in Figure �� It is possible that in the
second phase� the child nj will belong to several equivalence classes �which is why some nodes in Figure �
have several labels�� in which case we can produce a family of equivalent deterministic FSMs�
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Figure �� An example FSM with the greatest possible degrees of accessibility and distinguishability� �
denotes an accept state� 	 a reject state� Here� the machine accepts all strings x � f
� �g� such that the
number of �s in x is a multiple of �� 
 is the start state� It is clear that we need a string of length � to get to
state �� Also� to distinguish state 
 from state �� we need a string of length � �since state 
 maps ��� to a
reject state� and state � maps ��� to an accept state�� If we allow the empty string as an input �which does
not make sense for Mealy machines�� then the degree of distinguishability is d � n� � � � �AU
�� p������

�
�
� The complexity of the Russian algorithm

When comparing two nodes for equivalence� it isn�t always necessary to compare the whole of their subtrees�
as we now show� We say two states q� q� are k	distinguishable if there exists a word x of length at most
k� such that there is a path edge	labelled by x� starting in q� which ends in an accept state and another
path edge	labelled by x� starting in q�� which ends in a reject state� or vice versa� Otherwise the two states
are called k	indistinguishable or k	equivalent� denoted q	kq

�� �In the case of FSMs� we require that the
two paths transform x into the same output string� rather than requiring that they both label it as either
acceptable or not�� Two states are indistinguishable �equivalent� if they are k	indistinguishable for all k�
In terms of the tree� two nodes are k	equivalent if the subtrees of height k below them are the same� The
subtree of height k below a node is also called its k	tail or k	signature� Indistinguishability is an equivalence
relation which partitions the states into indistinguishability classes�

The degree of distinguishability of a �minimal� FSM� d�M �� is the minimal k such that any two states are
k	distinguishable� The degree of accessibility of an FSM� a�M �� is the minimal k such that any state is
accessible from q� by a word of length at most k� Trakhtenbrot and Barzdin� show that� to reconstruct M �
we need a uniform complete sample of size at most �d�a��� that is� a complete tree of height h � d� a� ��
�h is called the degree of reconstructibility�� This makes good intuitive sense� we need strings of length a
just to access the furthest states from q�� we then need an additional d characters to see if their children are
distinguishable� They also prove the following theorem�

Theorem � Consider a minimal FSM with n states� input alphabet � and output alphabet #� Then its
degree of distinguishability is bounded by

logj�j logj�j n� � � d � n� �

and its degree of accessibility is bounded by

logj�j n� � � a � n� �

Furthermore� these bounds are the best possible�

�




Though we shall not prove the theorem� the following example shows that the upper bound is tight� consider
an FSM which accepts strings x i� the number of ones in x � x�x� � � � xm is a multiple of n� See Figure �
for an example� The proof that the lower bounds are the best possible is somewhat trickier� and is omitted�

We are now in a position to state the complexity of the Russian algorithm� Let us de�ne N ��� h� to be the
number of nodes in a complete j�j	ary tree of height h� Clearly

N ��� h� � j�j� � � � �� j�jh � j�jh�� � �

j�j � �

The worst case sample complexity �i�e�� the number of strings in the input set� is therefore N ��� �n� ���
which is approximately ��n when j�j � �� The worst case time complexity can be computed as follows�
Clearly phase one is the slowest phase� and it makes up to �� � � ���t� �� � O�t�� equivalence comparisons�
where t � N ��� �n� �� is the number of nodes in the tree� Also� each equivalence check may need to check
up to N ��� n� �� � t��� nodes� so the total time is O�t����� This is approximately ��n for binary alphabets�

The worst case complexity of the Russian algorithm is very high� Can we do better on the average� In fact
we can� To de�ne the expected values of d and a� we have to specify what it is that we are randomising �and
hence what we are averaging over�� The �maximally random� case� when both the topology and the labelling
of the states �as either accept or reject� are randomly chosen� is studied by Trahktenbrot and Barzdin�� More
recently� Freund et al� �FKR���� have studied the case where the topology may be adversarially chosen� and
only the labelling is random� such DFAs are called typical�

Trahktenbrot and Barzdin� show that� in the maximally random case� �almost all� automata have degrees of
distinguishability and accessibility which are close to the lower bound� More precisely� E�d� � logj�j logj�j n
and E�a� � C logj�j n� where C is a constant� Lang �Lan��� found experimentally �for � � # � f
� �g� that
for a large fraction of randomly generated DFAs �with several thousand states�� a � � log� n� � and d � ��
He therefore made the approximation that a uniform complete sample must be of size ��� log� n�������� �
�������� � ��n���� Contrary to Angluin�s result �Ang
��� he found that it was possible to �approximately�
learn these random DFAs quite well even if the training set only contained about �$ of the uniform complete
sample�

�
�
� Learning random DFAs from sparse samples� the Greedy Russian algorithm

We brie y present Lang�s algorithm �Lan���� which is a variation of the Russian algorithm� Essentially he
combines the two phases of looking for states and then computing the transitions into one single pass over
the tree� When a node ni is found to be equivalent to a previous node nj� it means they have the same
subtree� so we can make the parent of ni point to nj instead� and discard ni and its children since they are
now inaccessible� �Hence the tree is transformed into a non	tree	structured graph on the way down�� An
upper bound on the running time is O�tn��� where t is the number of nodes in the tree and n is the number
of states in the �nal� minimalmachine� To see this� note that each state must be compared for compatibility
with every other state� and each comparison may involve checking up to t nodes �walking the whole tree��

Lang proposes the following extension of this algorithm to deal with the case where the input tree is not
complete� In this case� the absence of a labelling con ict between the subtrees rooted at ni and nj does not
guarantee that the two nodes correspond to the same state in the smallest consistent machine� However� we
can be greedy and merge the nodes anyway� This requires �overlaying� the subtree below ni onto the subtree
below nj� before it is discarded� This involves making the parent of ni point to nj� as before� and recursively
merging each of the children of ni with the corresponding children of nj� to remove any non	determinism�
However� this process might produce a con ict� because the subgraph can contain cycles and other non	tree
features� See Figure � for an example of such a con ict� Thus one cannot pre	check the legality of a potential
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Figure �� The pre�x tree for the training set �
� accept� ���
� reject� � denotes accept states� 	 denotes
reject states� other states have unknown polarity� The �rst step in Lang�s algorithm is to try merging states
A and B� Walks at A and B don�t reach C and G simultaneously� so no con ict is detected� However� when
A and B are combined� D and E get merged in as well� which causes C to be merged with G� which is a
con ict� �Lang� ��
���� personal communication��

merge by a simple walk starting at the two nodes� Lang�s solution is to �optimistically perform a destructive
merger of the subtree and subgraph while keeping backup copies of modi�ed nodes so that the work can be
cheaply undone if a labelling con ict is detected��

Later we will study several algorithms for learning PFAs� which are very similar to Lang�s and involve
merging equivalent states� However� the input only consists of positive examples� so these labelling con ict
complications do not arise� In fact� we cannot learn a DFA from positive data only� it is the repeated
presentation of strings �with frequency proportional to their probability� which compensates for the lack of
negative examples in the PFA case�

�
�
� Learning typical DFAs from a random walk

A �typical� automaton is one in which the states are randomly labelled as accept or reject� but the topology
may be arbitrary �possibly adversarially chosen�� Freund et al� �FKR���� extend the de�nitions and theorems
of the somewhat less random case considered by Trakhtenbrot and Barzdin� as follows�

De�nition � We say that uniformly almost all automata have property Pn�� if the following holds� for all
� � 
 �where � is a con�dence parameter�� for all n � 
 �where n is the number of states�� and for any
underlying automaton graph GM on n nodes� if we randomly choose f���g labels for the states� then with
probability at least � � �� Pn�� holds for the resulting automaton M � Such an automaton is called typical�
If the topology is also randomly chosen� we drop the word �uniform	 �since the property P might not be
�spread	 uniformly through the space of all automata with n states��	

Theorem � For uniformly almost all automata �with binary input and output alphabets�� the degree of
distinguishability is at most � log�n����� where � is a con�dence parameter �this is �one logarithm worse	
than the bound for the non�uniform case�� Hence for d � � log�n���� uniformly almost all automata have
the property that the d�signature is unique� where the d�signature of a state is its depth d subtree�

Because the signature is so short� we can hope to construct the signature of each state just by performing a
random walk on the underlying graph� In particular� Freund et al� propose that a �robot� receive a random

�Trahktenbrot and Barzdin� de�ne the phrase 
uniformly almost all� in an asymptotic way� namely� uniformly almost all
automata have property P if �� � as n���
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input bit at each step� and then predict the output of the current state as either � �accept� or � �reject��
It is also allowed to predict �� called a default mistake� after which it will observe the correct output� and
then return to the start state� �They also give a more complicated algorithm in which � does not return the
robot to the start state� this has slightly poorer performance�� Since each signature is unique� the robot can
recognize when it returns to a state� and hence can �ll in the transition data� They prove that� for uniformly
almost all n state automata� their algorithm is e�cient �runs in time polynomial in n and ����� makes no
prediction mistakes� and makes an expected number of default mistakes that is at most O��n����� log�n�����
This algorithm can be extended to learn a �restricted kind of� DPFA� by counting the number of times each
transition is made�

�
�
� Approximately learning DFAs with the k�tails algorithm

Recall that two states q� q� are k	equivalent if they are not distinguishable by any string x such that jxj � k�
In other words� they have the same k	tails� Clearly

q 	k�� q
��
�

q	kq
� and

�a � � � ��q� a�	k��q�� a�

Also� it can be shown �HU
�� that any partition of the states induced by 	 will lead to the minimal DFA�
This suggests the following iterative strategy for minimizing a DFA� known as Moore�s algorithm �AU
���

k �� 

compute 	�

while k � n� � and 	k ��	k�� do
k �� k � �
compute 	k in terms of 	k��

merge the k	equivalent states

This can be implemented to run in O�j�jn�� time as follows �HU
��� Construct an n � n array and mark
cell �i� j� �and �j� i�� as soon as qi and qj are found to be distinguishable� Start by marking �i� j� for all
qi � F� qj �� F � Then� for each pair of distinct states p� q� if� for some a� their children r � ��p� a� and
s � ��q� a� are distinguishable by some string x� then p and q are distinguishable by ax� so mark cell �p� q�
and dependents� Otherwise� �p� q� is placed on a list of dependents associated with the �r� s� entry� and if
�r� s� subsequently receives a mark� so will �p� q�� Since each pair �p� q� is considered at most j�j times �it
could be on up to j�j lists�� the running time is O�j�jn���
As Miclet �Mic�
� points out� the k	tails algorithm of Biermann and Feldman �BF
�� can be thought of
as running Moore�s algorithm but terminating at a particular value of k� If we stop at a low value of k�
the resulting machine will be small but highly non	deterministic �and therefore not equivalent to the target
DFA�� If we stop at a value of k which is greater than or equal to n � �� then we will return the minimal
machine which accepts the input set� namely the DAG canonical automaton�
 See Figure 
 for a worked
example�

�
�
	 The k�tails clustering algorithm

In the k	tails algorithm� we de�ned two states to be k	equivalent if their k	tails were equal� We can consider
other measures of similarity between k	tails� and then use a clustering algorithm to group the k	tails �now

�Interestingly� Biermann and Feldman independently arrive at the result of Trakhtenbrot and Barzdin� that to uniquely
reconstruct the FSM which generated the input set� we need a uniform complete sample of all strings of length at most �n� ��
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q k � 
 k � � k � � k � � k � �
� � � � aaa aaa
� � � � � cbca
� � � � bca bca
� � � ca ca ca
� � a a a a
� 	 	 	 	 	

 � � aa aa aa
� � a a a a� abca
� 	 	 	 	� bca 	� bca

Table �� The k	tails of each state of the DAG DFA in Figure � as a function of k� 	 denotes the empty
string�
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Figure 
� The DFA returned by the k	tails algorithm as a function of k� for the input set f bcbca� aaabca�
aabcbca� aaag� For k � � the algorithm returns the DAG canonical automaton in Figure �� See Table � for
the details of the computation�

��



viewed as �points� in a space of dimension �k�� Since we can always reconstruct a DFA given its set of
k	tails �for k � n � ��� in some sense each state is uniquely identi�ed by its k	tail� Hence� if two k	tails
are similar �in the same cluster�� their corresponding states should be merged� Miclet �Mic�
� calls this the
k	tails clustering algorithm� �Note that clusters are not the same as blocks in a partition� since we are not
claiming that two states in the same cluster are equivalent� just that they have similar k	tails��

We have to specify how the cluster will change when we add a new point to it� To save time� Miclet
makes the approximation k�q
q�� � k�q�
k�q�� �where k�q� is the k	tail of q�� whereas the exact relation is
k�q
q�� 
 k�q�
k�q�� �since when you merge states� more strings become acceptable��

We also have to specify the distance measure between two clusters� He proposes two rather ad hoc measures
of distance between k	tails� a �global� one

d��k�q�� k�q
��� def� minfjk�q�j � jk�q��k�q��j� jk�q��j � jk�q��k�q��jg

which measures the number of strings they do not have in common� and a more �local� one based on the
edit distance ds�x� x

�� between two strings

d��k�q�� k�q
��� def� max

x�k�q�

X
x��k�q��

ds�x� x
��

which measures the worst	case total number of changes needed to convert a string x in one k	tail to every
other string x� in the other k	tail�

He then uses a hierarchical �bottom	up� clustering algorithm
� which repeatedly looks for the nearest two
points and merges them� until no two points �k	tails� have any common strings� He starts with k � t � ��
where t is the number of nodes in the pre�x tree� and decrements it at each step� This proves to be more
e�ective than the k	tails algorithm on test cases consisting of small� hand	crafted DFAs�

��� Other methods

�
�
� Actively learning DFAs with oracles

In view of the hardness results on passively learning DFAs with arbitrary input� a number of people have
proposed equipping the learner with an oracle� which the learner can ask questions� This is called active
learning� or learning with queries� for a good account of actively learning DFAs� see �KV���� Angluin �Ang�
�
showed that the learner must be able to ask both membership queries �is x in the language��� and equivalence
queries �is the hypothesis M � equal to the target concept M � and if not� please give me a counterexample�
in order to exactly learn DFAs in time polynomial in n and the length of the largest counter example� We
can get by without the equivalence queries� and just use random examples and membership queries� if we
are content to PAC	learn the DFA�

In the oracle membership model� we assumed that the target DFA returns to the reset state before answering
whether x is in the language� If this is not the case � the so	called no	reset model � learning becomes
much harder� because the learner starts in an unknown state and ends up in an unknown state� However�

�For a good review of clustering algorithms� see �Seb��� ch� �	
�Asking whether a string is in the language is like performing an experiment in which the string is 
fed into� the black box�

and we observe whether it is accepted or rejected� In the more general case of inferring the structure of an FSM from a series
of experiments� see �Con��	� �See also Exercise ���� in �HU��	��
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Rivest and Schapire �RS��� show how the DFA can still be learnt in this case� by using homing sequences�
Intuitively� a homing sequence is an input sequence which� when executed� may allow the learner to determine
�where it is� in the machine� based on the observed output sequence� Freund et al� �FKR���� show how
to extend this method to the case of passively learning typical DFAs from a random walk� �i�e�� learning
random DFAs without an oracle� in the no	reset case� Rivest and Schapire need an equivalence oracle for
their homing sequence method� whereas Ron and Rubinfeld �RR��� do not� however� their algorithm only
works for DFAs with small cover time��� which intuitively means that all the states in the DFA are easy to
get to �Angluin�s proof relies on states which are hard to reach��

�
�
� Neural network methods

Minsky �Min�
� proved that �every FSM is equivalent to� and can be simulated by� some �recurrent� neural
network�� However� this does not imply that it is easy to learn the structure of an unknown FSM using
a neural network �NN�� The main problem is that FSMs are discrete �they de�ne operators over discrete
valued alphabets� and have a discrete set of internal states�� whereas NNs are continuous �they de�ne
functions over real	valued vectors� and have real	valued internal states�� Consequently� most early attempts
to learn DFAs with recurrent NNs �both �rst and second order� from positive and negative examples were
not very successful� they took a long time to run� and couldn�t even learn machines with as few as � states�
More recently� Das and Mozer �DM��� have suggested clustering points in the hidden layer�s state space
before passing it on to other layers� to encourage the formation of discrete representations during training�
Unfortunately� since they use a di�erent test set from the other algorithms mentioned in this section� it is
hard to compare empirical results� and no theoretical results exist�

� Learning DPFAs

��� De	nition of success

�
�
� Goodness�of��t to the data

As we mentioned earlier� the goal of learning PFAs is to approximate the target distribution to within
some precision given only a �nite training sample� The de�nition of acceptable precision is captured in
the following de�nition� which comes originally from �KMR����� and which has been used subsequently in
�RST��� RST���� It is inspired by the de�nition of PAC	learning a concept� given earlier�

De�nition � Let M be the target PFA we are trying to learn� and %M be a hypothesis PFA� Let PM and P
�M

be the two probability distributions they generate on ��� respectively� We say that %M is an �	good hypothesis
with respect to M � for � � 
� if

D�PM � P
�M� � �

where D�PM � P
�M� is some measure of distance between these two distributions� An algorithm is said to

e
ciently learn a PFA M if� for any M� �� � � 
 and random sample� it outputs an ��good hypothesis with
probability at least �� �� and runs in time polynomial in �

�
� �
�
� j�j and n� where n is the number of states in

the target PFA�

�	The cover time of a DFA M is de�ned to be the smallest integer t such that for every state of q in M � a random walk of
length t starting from q visits every state in M with probability at least �
��
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Several measures of distance between two probability distributions �with set of support X � have been pro	
posed� including the 
� distance� the L� distance� the variation distance� the quadratic distance �KS�
�� and
the Hellinger distance �BC���� However� we shall use the popular Kullback	Leibler divergence �also known
as the cross or relative entropy �CT����� de�ned by

DKL�P jjQ� def�
X
x�X

P �x� log
P �x�

Q�x�

We think of P as being the true� target distribution� and Q as being our best guess�

Strictly speaking� KL divergence is not a distance� since it only satis�es one of the three necessary properties
of a metric��� Nonetheless� it upper bounds �some simple function of� the other measures� so if we achieve
closeness in the KL sense� we achieve closeness with respect to the other measures� too� Let us brie y see
why this is so�

The L� norm is de�ned as

jjP � Qjj� def
�
X
x�X

jP �x��Q�x�j

the L� norm �quadratic distance� as

jjP � Qjj� def
�

�X
x�X

�P �x��Q�x���

� �

�

and the variational distance as

max
B�X

�P �B� �Q�B�� �
jjP � Qjj�

�
�

Now� it can be shown �CT��� p��

� that DKL�P jjQ� � �
� ln � jjP � Qjj��� so that if DKL�P jjQ� � �� then

jjP �Qjj� �
p
�� ln�� which is less than � when � � � ln � � ����� It can be shown that the L� norm bounds

the L� norm�

Note that the L� norm� de�ned as

jjP � Qjj� � lim
n��

�X
x

�P �x��Q�x��n

���n
� max

x
jP �x�� Q�x�j

behaves rather di�erently� since it does not consider the sum of the deviations� but rather the single largest
deviation� Thus requiring two distributions to be close in the L� sense is a much more stringent requirement
than requiring them to be close in some aggregate sense� This will turn out to be the crucial di�erence between
those classes of PFAs which are e�ciently learnable and those that are not e�ciently learnable� as we will
see�

��A metric d�x� y� should satisfy ��� d�x� y� � � i� x � y� ��� d�x� y� � d�y� x� �symmetry�� ��� d�x� z� � d�x� y� � d�y� z�
�triangle inequality�� The KL divergence only satis�es ����
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The KL divergence enjoys several other nice properties� as we now show �AW���� Firstly� note that
DKL�P jjQ� � EP log���Q���� � H�P �� where H�P � �

P
x�X P �x� log���P �x�� is the entropy of the dis	

tribution P � Since log���P �x�� is the length of the code word for x in an ideal �minimal length� code�
DKL�P jjQ� measures the expected additional code length �beyond the ideal code� needed to encode future
data if we think the distribution is Q but actually it is P � hence choosing the Q which minimizesDKL�P jjQ�
will give us the minimal length encoding�

Now suppose P is the empirical distribution of the data X � Finding the Q which minimizes DKL�P jjQ�
corresponds to minimizing

EP log���Q���� � �

jX j
X
x�X

log
�

Q�x�
�

�

jX j log
Y
x�X

�

Q�x�

which corresponds to maximizing
Q

x�X Q�x�� i�e�� the likelihood of the sample�

�
�
� Model simplicity

So far we have only considered how well our model �ts the data� but of course we are also interested in
learning simple models� since they generalize better� that is� perform better on data which was not part of
the training set� Enumerative algorithms� which generate every possible model in turn� will obviously �nd
the simplest model� but since the number of possible models grows exponentially in the number of states�
these algorithms are too ine�cient to be useful� �Top down� algorithms� which only add states when forced
to by the data �e�g�� �RST����� will also often �nd the simplest model �but not always� since they may not
be able to delete states in the light of new data�� So model simplicity is mainly a concern with �bottom up�
algorithms� which start with a model which exactly �ts the data �such as a canonical automaton� and then
proceed to merge similar states�

There are two kinds of errors a bottom	up algorithm can make� type � errors� in which two equivalent states
are not merged� and type � errors� in which two non	equivalent states are merged� If there are many type
� errors� the resulting machine will be unnecessarily large� we can reduce the type � error rate by loosening
our de�nition of similarity �at the risk of introducing more type � errors�� If there are many type � errors�
the inferred distribution will not be close to the target distribution� to reduce the type � error rate� we can
make our de�nition of similarity more restrictive �at the risk of introducing more type � errors�� Carrasco
and Oncina �CO��� show that in their algorithm� the type � error rate vanishes in the limit of in�nite data�
and hence they can achieve identi�cation in the limit with probability ��

Stolcke and Omohundro �SO��� SO��� adopt a Bayesian approach in their bottom	up algorithm� and attempt
to learn the HMM which has the greatest posterior probability� i�e�� which maximises Pr�M jx�� �This is called
the Maximum A Posteriori �MAP� model�� Bayes� theorem tells us

Pr�M jx� � Pr�M � Pr�xjM �

Pr�x�

so if we assign higher prior probability to simpler models� we can trade o� model simplicity Pr�M � with
goodness	of	�t Pr�xjM �� Stolcke et al� achieve this by using a prior based on the description length of the
�structure of the� model� This introduces a bias towards models with fewer states� �This bias is called an
Occam factor��
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��� Complexity results

Abe and Warmuth �AW��� showed that PFAs are trainable in time polynomial in �� � and m �the length of
each input string�� but not in j�j� assuming RP �� NP ��� However� this is a representation dependent result�
that is� it assumes the hypothesis �as well as the target� must be a PFA� It is known that if the hypothesis
class is allowed to be more general than the concept class� otherwise intractable problems sometimes become
tractable� For example� assuming RP �� NP � the class of �	term DNF formulae is not e�ciently PAC
learnable unless we use �	CNF to represent our hypotheses �see �KV������� However� Kearns et al� �KMR����
prove that� under a certain assumption��� it is not possible to e�ciently PAC learn PFAs using any kind
of hypothesis� when the hypothesis must be an evaluator� If the hypothesis is allowed to be a generator�
they are only able to prove that learning distributions generated by polynomial sized circuits �a much larger
class� is intractible� Since their proof is fairly simple� and also quite enlightening� we shall present it here�
But �rst we must de�ne the conditions under which it holds� namely under the Noisy Parity Assumption�

A parity function fa�x� takes x � x� � � �xn as an argument� and then computes the parity of the bits of x
speci�ed by its binary subscript a � a� � � � an� which can be thought of as a bit mask�

fa�x� �
nX
i��

aixi �mod ��

The parity problem is to �nd the vector a given a set of examples �x� fa�x��� This is easy to solve� The
noisy parity problem is when the parity of the examples may be incorrect with probability 
 
 � 
 �

� � That
is� the input set consists of pairs of the form �x� l�� where l � fa�x� with probability � � � and l � �fa�x�
with probability �� The Noisy Parity Assumption is the assumption that this problem cannot be e�ciently
solved in the PAC model when the example strings are chosen uniformly� there is good evidence for it�

Theorem � Under the Noisy Parity Assumption� the class of distributions over f
� �gn generated by a
DPFA is not e
ciently learnable with an evaluator�

Proof�
The basic idea is that for any parity function fa���� we construct a PFA whose distribution is uniform on
the �rst n bits of x� and for which xn�� � fa�x� � � �xn� with probability � � �� and the complement of
this with probability �� Thus the PFA will generate noisy labelled examples of fa� call this distribution
Da� The construction is illustrated in Figure �� Now suppose we have a hypothesis evaluator %D which
approximates Da� i�e�� which has learnt the PFA� It can be shown that we can determine fa�x� for any
x � f
� �gn to arbitrary precision� which violates the Noisy Parity Assumption� In particular� suppose
KL�Dajj %D� � ��� �H����� where H��� � � log � � �� � �� log��� �� is the binary entropy function� Then
for a random x � f
� �gn� we can determine fa�x� with probability � � � by saying the parity bit is 
 if
%D�x
� � %D�x��� and � otherwise�

There are several interesting things about this proof� First� it applies to deterministic� acyclic� levelled
�layered�� width two PFAs with binary alphabets� Clearly more general kinds of PFAs are going to be at

��NP is the set of languages for which we can test membership in polynomial time �but it may require exponential time to
generate such members�� RP is the set of languages for which we can test membership with probability at least �� � using a
randomized algorithm which runs in time polynomial in ��� and the length of the string�

��A ��term DNF �Disjunctive Normal Form� formula is a disjunction of three conjunctions� e�g�� �p�q����p�r�s� t����q��
A ��CNF �Conjunctive Normal Form� formula is a conjunction of disjunctions� each of which contains exactly three literals�
e�g�� �p ��q � r�� �s � p ��p��

��In �GS��	� they give an information�theoretic argument� which does not make any assumptions� that learning a hidden
Markov chain is hard�

��



0 1,0 2,0

1,1 2,1

3,0

3,1

n,0

n,1

n+1
0, 0.5

1,0.5

0, 0.5

1, 0.5

0, 0.5

1,0.5

0, 0.5

1, 0.5

0, 0.5

1, 0.5

0, 1-e

1, e

0, e

1, 1-e

.......

a = 0 a = 121

Figure �� Constructing a noisy parity function using a PFA� The state �i� 
� in the top row indicates that
the �rst i bits of x that we have examined �as determined by a� have even parity� Similarly� the states in the
bottom row store the fact that the parity so far is odd� Whenever ai � �� we switch �tracks� on encountering
a �� since this indicates that the parity has just changed� If ai � 
� we don�t switch tracks� since we are
ignoring bit xi� At the end� we emit the correct parity symbol with probability ��� �in the �gure� e denotes
���

least as hard to learn� Secondly� the distance in the L� norm �and hence also the KL	divergence� between
the distributions generated starting from every pair of states is large� To see this� consider two states p� q
and their corresponding distributions P�Q� If p and q are on di�erent levels� the distance between P and
Q will be large simply because they generate strings of di�erent lengths� So suppose p and q are on the
same level l� For every string s of length n� l� if s has even parity� then starting from the even parity state
the string s
 is generated with probability ���n�l��� � �� and the string s� is generated with probability
���n�l��� The opposite is true starting from an odd state� Even though each of these di�erences is small
�especially for small l�� their sum is ���� ���� and assuming � is bounded away from �

� � this is large�

jjP � Qjj� �
X

s��n�l
jP �s
��Q�s
�j � j�P �s���Q�s��j

� �n�l���n�l����� ��� � ��� ����

� ���� ���

By imposing an extra condition on the class of Acyclic� Deterministic PFAs �APFAs�� Ron� Singer and
Tishby �RST��� prove that it is possible to e�ciently learn this class using an algorithm we will study later�
�They also conjecture that it is possible to learn cyclic DPFAs �with the distinguishability property� using
their algorithm� but were unable to prove this case���� The extra condition they impose is that the APFA
be �	distinguishable� de�ned as follows�

De�nition � We say that two states q�� q� are �	distinguishable if there exists a string s for which jPM
q�
�s��

PM
q� �s�j � �� We say that a PFA M is ��distinguishable if every pair of states in M is ��distinguishable�

This can be thought of as the probabilistic extension of k	distinguishability� Note that the distributions
between any pair of states in the noisy parity PFA are far apart in the L� sense� but not in the L� sense�
and hence are not �	distinguishable�

Finally� we mention a result on the complexity of learning PFAs with oracles� Tzeng �Tze��� discusses how to
learn an input	PFA when the input consists of a set of strings and the corresponding probability distributions

��Dana Ron� personal communication� �
��
���
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Figure �� An illustration of merging states� A is the original canonical automaton� B is the result of merging
nodes � and �� and corresponds to a non	deterministic automaton� C is the result of merging all the children
of � and �� Solid edges are transitions labelled by 
� dashed egdes �which always lead into leaves� are labelled
by the �nal symbol� and dotted edges are labelled by �� Adapted from Figure � of �RST����

they induce on the states� i�e�� the probability that the automaton ends up in each state after accepting the
string� He shows this problem is NP	complete �see also �GS����� However� if the learner is given access to
an oracle which can specify the probability distribution induced by any string� then the input	PFA can be
learnt in polynomial time� He assumes throughout that the probabilities are rational�

��� The Spanish algorithm

The algorithm due to Carrasco and Oncina �CO���� which we call the �Spanish� algorithm for brevity� is
basically a stochastic version of the �Greedy Russian� algorithm we discussed earlier� The di�erence is
that the input is now a multiset of positive strings instead of a set of positive and negative strings� Also�
the de�nition of equivalence between two states is changed to take probabilities into account� two states
q� q� are de�ned to be similar if they assign similar probabilities to each of the branches in the �rst level of
their subtree� and� recursively� if their corresponding children are similar� �We will de�ne what it means for
two probabilities to be similar shortly�� The recursive part of the de�nition e�ectively implies that all the
corresponding branches in the subtrees below q� q� must be similar in probability� When q and q� are merged�
the automaton may become non	deterministic� but since their children are similar� they will subsequently
be merged� removing the non	determinism �see Figure ���

The de�nition of similarity which they use is motivated by the following bound� due to Hoe�ding� on the
probability that a Bernoulli random variable with expected value p deviates from its empirical mean given
by f successful trials out of n�

����p� f

n

���� 

r

�

�n
log

�

�
with probability larger than ��� ���

They reject the equivalence of two nodes only if the two estimated probabilities di�er by an amount which
is greater than the sum of their con�dence bounds� The empirical probabilities which are being compared

��



are de�ned as follows� Let mu denote the number of strings arriving at u and mu��� the number of strings
leaving u via an arc labelled �� Then the probabilities on two nodes u and v are similar if for all � � ��

jmu���
mu

� mv���
mv

j �
q

�
� log

�
� �

�p
mu

� �p
mv

�� The advantage of this criterion is that it is sensitive to the sample

size� nodes lower down the tree will have lower counts� so the criterion for similarity is relaxed to allow for
bigger  uctuations�

They show that it is possible to choose a value for � such that� in the limit of in�nite data� the probability
of type � errors �merging non	equivalent nodes� vanishes� It is also possible to reduce the type � error rate
�rejection of compatibility between two equivalent nodes� provided one has a larger sample to compensate for
the increased frequency of type � errors� This algorithm can therefore learn arbitrary DPFAs with probability
� in the limit� from positive examples only�

��� The APFA algorithm

Ron� Singer and Tishby �RST��� present an algorithm which is very similar to the Spanish algorithm� in that
it merges states based on a probabilistic similarity criterion� The di�erence is that they can characterize
precisely how well the algorithm will perform on �nite data sets� In particular� they show that if the sample
size is large enough� they can return an �	good hypothesis with probability at least � � � for any � and ��
Furthermore� the algorithm is e�cient�

Of course� in view of the hardness results we discussed above� they must impose certain constraints to achieve
these goals� Namely� their algorithm can only learn acyclic DPFAs �APFAs� which are �	distinguishable
�de�ned above�� They speculate that the acyclicity condition is inessential� but needed it to make the
proof go through� In fact their algorithm works on levelled acyclic APFAs� in which each node only makes a
transition to the next level� except for transitions labelled by the �nal symbol �which denotes the termination
of each string�� which may �hop over� to the �nal node in the lowest level� However� every APFA having n
states and depth D can be converted into an equivalent levelled APFA with at most n�D� �� states� so this
is not a major restriction�

The algorithm takes as input a con�dence parameter �� an error tolerance �� a bound on the number of
states n� and a distinguishability parameter �� �The latter two assumptions can be removed by searching for
an upper bound on n and a lower bound on ��� It then proceeds to merge similar states within each level
�thus keeping the graph acyclic�� provided their counts exceed some minimum value m� �which is given in
the proof�� This prevents nodes whose counts are too low to be reliable from being merged�

The de�nition of similarity is similar to the Spanish case� Two nodes u and v are similar if for every string
s� jmv�s��mv �mu�s��muj � ���� where mv�s� is the number of strings leaving v which have s as a pre�x�
and mv is the total number of strings leaving v �i�e�� its count�� This can be computed by performing a
depth	�rst search over the tails �subtrees� of u and v� The reason this does not take exponential time is that
we don�t need to examine every string of length equal to the longest distinguishing string� they can prove
that� if the sample is big enough� there will be a string which distinguishes every pair of non	equivalent states
of su�cient weight with high probability �because the machine is �	distinguishable�� and as soon as such a
witness is found� we can quit searching the subtree�

At the end� for each level i in turn� all nodes which have too low a count are merged into a special node
called small�i�� The emission probabilities are estimated by the following smoothing formula�

Pr��jq� � �mu����mu��� � �j�j� ���min� � �min

where �min is a constant speci�ed in the analysis of the algorithm� Smoothing is necessary to avoid saying
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that something has zero probability �and hence is impossible� just because it hasn�t been seen in the data
set�

��� The PSA algorithm

We have already de�ned Probabilistic Su�x Automata as a kind of DPFA� which can be viewed as a variable
memory Markov chain� As a reminder� every state is labelled by a �nite length string in ��� If every label
is at most length L� we call it an L	PSA� The label encodes how much �history� we pay attention to� �To

ensure this condition� we require that� if there is an arc p
a��q� then the label of q should be a su�x of s � a�

where s is the label of p� and s �a denotes string concatenation�� If the set of states is �labelled by� all of �L�
we have an order L Markov chain� since the next state transition probability depends on the last L symbols�

Ron� Singer and Tishby �RST��� show how to e�ciently PAC	learn a PSA using a Probabilistic Su�x Tree
�PST� as the hypothesis representation��	 We shall just give a brief sketch of their algorithm��
 Start with
the empty tree and add a new node v with label s when given a string s only if� for some symbol �� the
empirical probability of seeing � following s di�ers susbtantially from the empirical probability of seeing �
following su�x�s�� the string labelling the parent of v� This is a top	down approach� since it incrementally
grows the tree� A bottom	up approach would consist of building the PST for the whole dataset� and then
trimming nodes which don�t meet the above criterion�

Ron et al� say that PSAs are good for capturing the long	range stationary� statistical properties of the
source� and APFAs are better for capturing short sequence statistics� They have used APFAs to segment
cursive handwriting into characters� and PSAs to correct corrupted strings of characters� and combined the
two in a complete handwriting recognition system�

�
�
� When the input is a single string

Another interesting aspect of �RST��� algorithm is that it can take as input a single long string of length
m� This is converted into the standard multiset by sliding an overlapping window of width �� to generate
m � � � � strings� � is then an upper bound on the order of the Markov chain which can be learnt�

In the single string case� we can only infer ergodic models� since transient transitions are not exercised often
enough to get reliable statistics� �An ergodic model is one in which you every state can be reached from every
other with non	zero probability� The underlying directed graph must therefore be strongly connected��
�

We now consider the problem of how long the input string must be in order to reliably learn a PSA M �
Intuitively� we must observe each state whose stationary probability is non	negligible enough times so that
we can identify the state as signi�cant� and so that we can compute �approximately� the probability of
emitting each symbol from that state� So the string must be long enough to ensure the convergence to the
stationary distribution�

The stationary distribution &M ��� is the unique distribution satisfying

&M �q� �
X
q�

&M �q�� Pr�qjq���

��A su�x tree for a set of strings S is the pre�x tree of the set of su�xes of the strings in S �see �Gus��	�� A probabilistic
su�x tree is a su�x tree with probabilities attached to each branch� This is similar to a DPFA�

��For an algorithm for learning a 
normal� Markov chain in the limit with probability �� see �Rud��	�
��In �RST��	 they say that it is also necessary that the machine be aperiodic� i�e�� that the greatest common divisor of the

lengths of the cycles in the underlying graph is ��

�




Let RM be the state transition matrix� and 'RM the time reversal of RM � that is� RM �q� q�� is the probability
of going from q to q�� and 'RM �q� q�� is the probability of going from q� to q� De�ne the multiplicative

reversibilization UM of M by UM
def
� RM

'RM � Denote the second largest eigenvalue of UM by 	��UM �� They
then allow the length of the string �and hence the running time of the algorithm� to be polynomial in �� n�
j�j� �

�
� �
�
and �

�����Um� � where � is the pre	speci�ed maximum order of the chain� and n is the maximum

number of states �if this is unknown� we can search for an upper bound�� This means that� to learn Markov
chains which only slowly converge to their stationary distribution� you need more data� and hence more time�

��� The Crutch	eld algorithm

Crutch�eld and Young �CY��� proposed an algorithm very similar to the two	pass Russian algorithm� but
which has di�erent input and output� Namely� the input is one long string� which is divided into all the
overlapping substrings of length �� and the output is a DPFA� �Hence the canonical automaton is a not
necessarily complete tree of height ��� The algorithm constructs a DFA M in a similar way to the Russian
algorithm� the di�erence being that two states are deemed equivalent if all strings of length exactly k in their
tails are the same� This means that we can only perform the equivalence test on nodes down to level � � k
�counting the root at level 
�� They call process �topological reconstruction�� They then attach probabilities
to the arcs of this DFA by examining the counts on the nodes in the tree in a manner we now describe�

For each state �ni� in M � pick a representative node ni from this equivalence class and examine all its arcs

in the tree� If we are currently examining transition ni
a��nj in the tree� we add the transition �ni�

a��
c

�nj�
to the automaton� where c � c�ni��c�nj�� Unfortunately this is not sound� when we are learning DFAs� it
does not matter which node we choose to �represent� state �ni�� since they are all equivalent� but when are
trying to learn PFAs� the representative we choose a�ects the resulting probabilities� They suggest picking
as a representative the node highest up in the tree� where the counts are larger� and hence the statistics
more reliable� We will discuss alternatives later� in the section on learning NPFAs�

� Learning NPFAs �HMMs�

��� Using the Baum�Welch algorithm

A popular approach to learning the topology of an HMM is to construct a fully connected graph �a clique�
on n nodes �where n is an upper bound on the number of states in the model you are trying to learn�
and then let the Baum	Welch training procedure assign zero weight to arcs which are not necessary� This
approach has two drawbacks� Firstly� n will usually be unknown� This is not a major problem� since we
can incrementally try n � �� n � �� � � � � until the results �as determined by� say� a cross	validation test�
are deemed acceptable� �Some other methods of computing the right size of model have been proposed� but
cross	validation seems to work the best in practice �KMNR����� The more serious problem is that a fully
connected graph on n nodes has O�n�� arcs� which is a large number of free parameters� not only are many
of these potentially redundant� but models with a large number of free parameters need more training data
to avoid over�tting�

A PAC	style analysis of an EM	like algorithm for learning a certain subclass of HMMs is given in �FR����

��� Iterative state duplication
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Horizontal growthState duplication Vertical growth

Figure �
� An illustration of the state duplication method� On the left we illustrate how all the connections
to the state are copied to the new state� In the next two columns we illustrate how a particular state may be
connected up� what the new topology will look like after duplication� and how it may end up looking after
pruning� From Fig� �� of �FAK����

We now discuss an ad hoc method which uses the Baum	Welch procedure as part of its �inner loop�� In
�FAK���� the authors are interested in using HMMs for �nding common patterns in proteins called motifs�
Their topology learning algorithm is as follows� They start out with a fully connected graph on n nodes�
Then they train it using Baum	Welch� prune transitions with negligible probability �to prevent the model
becoming too large�� �nd the node �call it q� with the greatest number of in and out arcs �choose randomly
if there are ties�� make a copy of q� and repeat until su�cient accuracy is obtained� The intuition is that
the most densely connected node may in fact represent two di�erent states� so we make a duplicate copy
of it� and let subsequent training and pruning eliminate any unnecessary new arcs �see Figure �
�� Since
the Baum	Welch algorithm gets stuck in local optima� they repeat the whole process from di�erent random
starting points�

A similar approach� called the �Successive State Splitting� Algorithm� is described in �TS��� in the context
of left	right speech recognition models�

��� Model surgery

Another approach is to construct a topology by hand� and then ��ne tune� it after it has been trained� Con	
sider� for example� the approach of �model surgery� used in HMM models of protein sequences �KBM�����
they start out with a �backbone� of n states� with transitions to skip over states� and transitions to side
states with self	loops� which allow the insertion of extra symbols� If� after training� it is found that the skip	
ping transitions are used very frequently� they sdelete the part of the chain which is skipped over� Similarly�
if the insert states are used very frequently� they add more states into the backbone� In this paper we are
interested in fully automatic means of inferring the correct topology� �It would be interesting to consider
the possibility of using the handcrafted topology as a prior to an automatic Bayesian method��
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��� Using a Bayesian state�merging method

The most well	principled approach to learning HMMs is by Stolcke and Omohundro �SO��� SO���� As in
many of the methods for learning PFAs� they repeatedly merge states in the pre�x tree �i�e�� the maximum
likelihood HMM�� but they no longer recursively merge the children of two merged nodes� and hence the
resulting machine becomes non	deterministic� This means we cannot compute the similarity of two nodes
based on their subtrees� since there may be many branches below each node with the same label� Instead�
they consider all pairs of states� and then compute the posterior probability of the model in which this pair
is merged� the pair which maximises this posterior is then picked as the pair to be actually merged� �Hence
this is a greedy or best	�rst algorithm� which can get stuck in local optima�� They continue to merge until
the posterior stops increasing� �A large part of their lucid paper is concerned with how to compute these
probabilities e�ciently� which we will not go into here�� They show experimently that their algorithm out	
performs the approach of learning the weights on a fully	connected graph using the standard Baum	Welch
algorithm� They have also incorporated it into a speech recognition system� although� as noted above� an
APFA performs as well on this same dataset and can be learnt much more quickly�

As mentioned above� they compute a prior probability for the model structure which produces a bias towards
simpler models� They also use a prior for the transition and emission probabilities� which is a good way to
deal with small training sets� Since these probability distributions are multinomials� they use a Dirichlet
prior� which is the conjugate prior for a multinomial� This has the e�ect of adding �virtual samples� to
the data set� which is similar to the somewhat more ad hoc approach to data smoothing of simply adding
a constant to all the empirical counts� of which we saw an example above� �Similar approaches are used in
other applications of HMMs� e�g�� �BHK������

��� A new algorithm for learning NPFAs

Intuitively� it seems that it ought to be possible to extend the idea of merging states whose signatures
�subtrees� are similar to the case of learning non	deterministic PFAs� We decided to do this by using the
two	pass approach used in the Russian and Crutch�eld algorithms� where we �rst identify states that are
similar� and then merge them�

We say that two states q� q� are similar if their k	tails are �	similar� which means they contain the same set of
strings� and for each string x in the tails� jPr�xjq�� Pr�xjq��j � �� �This is similar to �	indistinguishability�
except that we are restricting attention to the strings in the subtrees�� Of course� as we go down the tree�
the counts get smaller� and hence the statistics less reliable� We must therefore either ignore nodes which
have too low a count �as in the APFA algorithm�� or have a sample	size sensitive measure of similarity �as
in the Spanish algorithm�� This problem is especially acute since we do all the similarity computations
before merging any nodes �which increases the counts�� The most important di�erence of this de�nition
from previous ones is that we do not require the children of two similar nodes to be similar� Hence� q and q�

may be deemed similar� yet q transitions to state r on letter a and q� transitions to state s �� r on letter a�
The resulting machine may therefore be non	deterministic� �In the APFA algorithm� they do not explicitely
require that the children of two similar nodes be similar� but they recursively merge the children of two
similar nodes� thus removing any non	determinism��

�	similarity is not an equivalence relation� rather� it produces clusters of similar points� which correspond to
the same state� We need to be able to perform two operations on our clusters �states�� in the �rst pass� decide
if a node in the tree belongs in a cluster �i�e�� if it is similar enough to the other nodes in that cluster�� and
in the second pass� �nd all the arcs leaving this state� The membership operation is essentially comparing a
node with a moving target� since the number of nodes in a cluster is continually growing as we walk down
the tree� The arc operation is also tricky� When computing the arcs from a state� should we consider all

��



the nodes in that cluster� and if so� how do we combine their counts� We are currently investigating these
issues�
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